首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3,3-Dimethyl-1,1-diphenyl-1,4-pentadiene and two 5-substituted derivatives were synthesized and studied. The regioselectivity, stereochemistry, quantum efficiency, multiplicity, and excited state reaction rates were studied in each case. The parent hydrocarbon, 5-MeO-derivative, and 5-cyano-diene—all rearranged on direct irradiation to give vinylcyclopropanes. The first compound led to 3,3-dimethyl-2,2-diphenyl-1-vinylcyclopropane. The second afforded 3,3-dimethyl-2,2-diphenyl-1-(2'-methoxyvinyl)cyclopropane. The last gave 1-cyano-3,3-dimethyl-2-(2',2'-diphenylvinyl)cyclopropane. Thus, the vinyl and methoxyvinyl groups survive in the products intact, while the cyanovinyl group is incorporated in the three-ring. In the two substituted dienes, cis-reactant gave cis-product and trans-reactant gave trans-product, both where the substituent was on the vinyl group of the product and where it became a ring substituent. The substituted di-π-methane systems underwent only cis-trans isomerization on sensitization, while the parent, unsubstituted diene led to di-π-methane product on sensitized as well as direct photolysis. While the quantum yields for the hydrocarbon diene were the same at room temperature for the direct and sensitized runs, only the sensitized runs showed a temperature dependence of efficiency with a dramatic, 5-fold increase on a 46° temperature increase. Thus, evidence was obtained for a singlet rearrangement in all cases and a triplet process only in the case of the unsubstituted diene. A sizable activation energy was seen for the triplet but not for the singlet. The room temperature quantum yields in the direct irradiations were: φ(parent diene)=0.011, φ(trans-methoxydiene)=0.051, φ(cis-methoxy-diene)= 0.050, φ(trans-cyanodiene)=0.36, and φ(cis-cyano-diene) = 0.20. A competing side reaction was cis-trans isomerization but these quantum yields were lower. Single photon counting was employed to obtain excited singlet reaction and decay rates at low temperature (i.e. 77°K) and the method of magic multipliers was used to obtain room temperature rates. These were: kr(parent diene) = 4.7 × 108 sec?1, kr(trans-cyano-diene)= 1.5 ×1010 sec?1, kr(cis-cyano-diene)= 8.0 × 109sec?1, and kr(trans-methoxy-diene) = 1.9 × 109 sec?1. The results are discussed in terms of excited state molecular structure.An SCF-CI molecular orbital treatment of the reaction was developed. This used a cyclopropyldicarbinyl diradical species, with Walsh cyclopropane basis orbitals, as representing the half-reacted species. The energy of formation of this species from vertical excited state reactant was calculated for all three dienes and an excellent correlation with observed excited singlet rates was obtained. Similarly, dissection of the excited diradical energy into bond components led to a correlation between regioselectivity and weakness of the three-ring bond broken in the regioselectivity-determining step. Evidence was adduced for localization of the excitation energy in S1 of reactant in the diphenylvinyl chromophore with migration of electronic excitation into the cyclopropyldicarbinyl diradical moiety during the vinyl-vinyl bridging process. A general method for quantitatively partitioning excitation energy was developed and applied to the case in hand. Finally, there was predicted a greater probability of di-π-methane three-ring fission in the excited state compared to the diradical ground state where Grob fragmentation proved energetically more favorable.  相似文献   

2.
We report that both singlet and triplet energy transfers in stilbene-cored benzophenone dendrimers (trans-BPST) took place quite efficiently. On excitation (290 nm) of stilbene group, the intramolecular singlet energy transfer from the excited core stilbene to the benzophenone part (99.7%) was confirmed by quenching of the fluorescence from the core stilbene. The benzophenone in the excited singlet state is known to undergo intersystem crossing to give its excited triplet state quantitatively. However, the very weak phosphorescence from benzophenone part in trans-BPST was observed even at 77 K. The phosphorescence intensity of trans-BPST is only 1% of that of model compound (4-methylbenzophenone) at 77 K. During the irradiation, the absorption spectra also changed due to the trans-cis isomerization. This is probably due to the ultrafast triplet energy transfer from the benzophenone to produce the triplet state stilbene.  相似文献   

3.
Pyramidal distortions which may stabilize the triplet π,π* state of ethylene are investigated using ab initio molecular orbital calculations. Using a minimal basis set, the calculated stabilization energies are 5.1 kcal mole?1 for a cis flapped conformation, 3.6 kcal mole?1 for a trans flapped conformation, and 0.8 kcal mole?1 for a twisted flapped conformation. With a double zeta basis set the predicted stabilization energies are much smaller: 1.3, 0.7, and 0.0 kcal mole?1, respectively.  相似文献   

4.
The direct transcis photoisomerization of trans-1-phenyl-2-(2-naphthyl) ethylene (trans-PNE) in liquid solution at room temperature was studied by the nanosecond laser photolysis technique. The time-resolved Sn←S1 and Tn←T1 absorption spectra were observed with trans-PNE at 300 K and 77 K. The lifetime of the triplet state of trans-PNE was found to be much shorter in liquid solution at room temperature than in rigid solution at 77 K. This fact and the effect of a triplet quencher shows that the photoisomerization of trans-PNE occurs mainly via the triplet state.  相似文献   

5.
Ze Han 《Tetrahedron》2008,64(11):2619-2625
We investigated the use of photochemistry to make novel derivatives of pentoxifylline. Under conditions that favour singlet excited states, we obtained 1-allyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione, (R,R)-(±)-1-{[2-hydroxy-2-methylcyclobutyl]methyl}-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione and 1-(5-hydroxyhexyl)-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione. Naphthalene or molecular oxygen increases the yields and triplet sensitisers (acetophenone, benzophenone and acetone) decrease the yields. Efficient intramolecular triplet energy transfer from the carbonyl to the xanthine moiety allows the carbonyl moiety to react from a singlet excited state only. In solvents with an α-hydroxyalkyl hydrogen under conditions that favour triplet excited states, we obtained 8-substituted pentoxifylline derivatives: 8-(1-hydroxy-1-methylethyl)-3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1H-purine-2,6-dione in isopropanol, 8-(1-hydroxymethyl)-3,7-dimethyl-1-(5-oxo-hexyl)-3,7-dihydro-1H-purine-2,6-dione in methanol and 8-(1-hydroxyethyl)-3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1H-purine-2,6-dione in ethanol. The xanthine moiety reacts from a triplet state via a radical mechanism and yields are considerably improved by the addition of catalytic amounts of di-tert-butyl peroxide.  相似文献   

6.
The triplet-triplet absorption spectra of p-N, N-dimethylnitroaniline, 4-nitro-p-terphenyl, 1-amino-4-nitrofluorene, 5-nitroacenaphthene, trans-1-(4-methoxy-phenyl)-2-nitroethylene (MeONS), and trans-1-(4-dimethylaminophenyl)-2-nitroethylene (DANS) in EPA glass at 77 K are reported, together with molar extinction coefficients and PPP-SCF-MO-CI calculations. The two nitrostyrenes, MeONS and DANS, have been examined in fluid media at room temperature using nanosecond laser photolysis, and their triplet lifetimes found to increase substantially with increase in solvent polarity and charge-transfer character of the compound. This is interpreted in terms of the diradical/zwitterionic nature of the triplet state affecting the T1–S0 energy gap at the 90° twisted configuration of the olefinic linkage. The decrease in both the triplet yield and the fluorescence yield of DANS with increase in solvent polarity is explained by the intervention of an internal conversion process involving a rotation of the dimethylamino group in the lowest singlet excited state.  相似文献   

7.
The emissions of biacetyl excited at 4200 Å were studied at pressures down to 10?3 torr. Apart from the well-known nanosecond fluorescence, a new emission of the same spectral composition was found with a non-exponential decay in the microsecond range. Furthermore the phosphorescence, as defined by its spectral composition, was found to be collisionally induced.The results imply that after excitation, the molecule rapidly transfers (rate constant kS→T) to the triplet state, giving rise to the nanosecond decay time; and can then transfer back to the singlet state (rate constant kT→S), giving rise to the microsecond emission. At the same time internal conversion can occur (kS→S0). From an analysis of the data we find for kS→S0 = 2.4 × 107 sec?1, kS→T = 7.6 × 107 sec?1, kT→S = 1.9 × 105 sec?1. The kinetic treatment can be transformed to a quantum mechanical one, yielding values for the triplet level density (?T), the coupling element VST and the number of triplet states (N) coupled to the singlet excited. At 4200 Å we find ?T = 6.3 × 105cm, VST = 1.0 × 10?5 cm?1, N = 400.Phosphorescence occurs only when the molecule is deactivated by collisions to a vibronic triplet state below the vibrationless excited singlet state. The efficiency of biacetyl collisions is 0.54.  相似文献   

8.
The ultrafast photoisomerization and excited-state dynamics of trans-4-methoxyazobenzene (trans-4-MAB) in solutions were investigated by femtosecond transient absorption spectroscopy and quantum chemistry calculations. After being excited to the S\begin{document}$_2$\end{document} state, the two-dimensional transient absorptions spectra show that cis-4-MAB is produced and witnessed by the permanent positive absorption in 400\begin{document}$-$\end{document}480 nm. Three decay components are determined to be 0.11, 1.4 and 2.9 ps in ethanol, and 0.16, 1.5 and 7.5 ps in ethylene glycol, respectively. The fast component is assigned to the internal conversion from the S\begin{document}$_2$\end{document} to S\begin{document}$_1$\end{document} state. The other relaxation pathways are correlated with the decay of the S\begin{document}$_1$\end{document} state via internal conversion and isomerization, and the vibrational cooling of the hot S\begin{document}$_0$\end{document} state of the cis-isomer. Comparing of the dynamics in different solvents, it is demonstrated that the photoisomerization pathway undergoes the inversion mechanism rather than the rotation mechanism.  相似文献   

9.
The properties of the triplet state of five styrylphenanthrene (StPh) trans isomers were studied in 2-methyltetrahydrofuran (MTHF) as a function of temperature. At room temperature the T-T absorption was observed only for 4- and 9-StPh, while under these conditions 1-, 2-, and 3-StPh have too low a quantum yield of triplet formation (ΦT <0.02); their T-T absorption spectra were obtained at low temperature. ΦT of 1- and 2-StPh increases more than tenfold on going from 293 to 77 K, and the triplet lifetime (τT) increases by four orders of magnitude and approaches values of 5–40 ms at 77 K. The change in τT is explained in terms of an equilibrium between trans and perpendicular (perp) conformations of the lowest triplet state in fluid solution and temperature and viscosity effects on the trans → perp rotation. Evidence is presented for the existence of two conformeric trans triplet states of 3-StPh at 77 K. Semi-empirical calculations were performed to obtain the energy of the triplet state, the wavelengths of several T-T absorption maxima (λT), and the oscillator strength. The calculated λT values coincide with those measured in n-hexane.  相似文献   

10.
This paper presents a study of mechanisms of photo-sensitized oxidation of cis-1,4-polybutadiene by N-methyl-2-benzoyl-β-naphthiazoline (BN) in solution. Detailed photochemical study of BN shows that the lowest triplet state of BN has an energy of 54.3 cal mol?1 and a life-time of 0.20 s at 77 K. In addition, rate constants for the quenching of the triplet state of BN have been calculated. These results show the possibility of energy transfer from excited triplet state to molecular oxygen with formation of singlet oxygen, which can further react with another BN molecule (photo-decomposition of BN) or with cis-1,4-polybutadiene added. During light irradiation of BN, free radicals are formed; they can initiate polymer chain scission and crosslinking.  相似文献   

11.
A reinvestigation of 2-methylacetophenone ( 1 ) by ns flash photolysis has provided detailed evidence for the reaction sequence of photoenolization. The triplet reaction proceeds adiabatically from the lowest excited triplet state of the ketone, 3 K (1) , to the enol excited triplet state, 3 E (1) , which decays both to enol and ketone ground state. The Z- and E-isomers of the photoenol, Z- E (1) and E- E (1) are formed in about equal yield by the triplet pathway, while direct enolization from the lowest excited singlet state of 1 yields (predominantly) the Z-isomer. Intramolecular reketonization from Z- E (1) to 1 proceeds at a rate of ca. 108s?1 in cyclohexane, but can be retarded to ca. 104s?1 in hydrogen-bond-acceptor solvents. The proposed mechanism is summarized in Scheme 1 and rationalized on the basis of a state correlation diagram, Scheme 2. 3,3,6,8-Tetramethyl-1-tetralone ( 2 ) was used as a reference compound with fixed conformational position of the carbonyl group, and some results from a brief investigation of 2,4-dimethylbenzophenone ( 3 ) are also reported.  相似文献   

12.
The lowest excited nπ* triplet of 9.10-anthraquinone, 1.4-naphthoquinone and 1,4-benzoquinone were studied in glassy matrices at 77 K using a time-resolved ESR method. The D value of the triplet state of 9,10-anthraquinone varied from ?0.351 cm?1 in a polar solvent to ?0.318 cm?1 in a non-polar solvent. Both 1,4-naphthoquinone and 1,4-benzoquinone in polar solvents showed triplet state spectra with a D value of ?0.330 cm?1. A computer simulation revealed the existence of widely distributed zero-field splitting parameters in the glassy condition. These data are compared with an analysis of CIDEP results of para-quinones.  相似文献   

13.
Kurt Schaffner 《Tetrahedron》1976,32(6):641-653
The photochemistry of 1-acyl-2-cyclopentenes varies with the nature of the acyl group. On direct irradiation the aldehyde eliminates carbon monoxide in the singlet excited state, and the aroyl compounds cleave to allyl-aroyl radical pairs both from the singlet and triplet states. In competition to α-cleavage the methyl ketones isomerize in an allylic 1,3-acetyl shift. The lowest-lying reactive triplet of these methyl ketones, characterized as a 3(π, π*) state in the case of the 3-phenyl homologue, undergo oxadi-π-methane rearrangement to a mixture of endo- and exo-5-acetylbicyclo[2.1.0]pentanes.The ground state-acetylbicyclopentanes react in two ways at elevated temperatures: endo-exo stereomutation by selective cleavage of the central cyclopropane bond and reclosure of the 1,3-cyclopentane diradical intermediate, and a rearrangement of the endo isomer to 1-acetyl-2-cyclopentenes on a separate potential energy surface involving a formal 1,2-acetyl shift. The unusually large negative entropy of activation for this latter reaction is suggestive of a concerted electrocyclic process in which the electrons of the internal cyclopropane and the C(5)-acetyl bonds participate.  相似文献   

14.
The structure and conformational dynamics of the COCl–COF molecule in the ground and lowest excited electronic states were investigated theoretically by the CASPT2/cc-pVTZ method. The equilibrium geometric parameters, harmonic vibrational frequencies, potential functions of internal rotation, and adiabatic transition energies were obtained. According to the results of calculations, the molecule in the ground electronic state exist as the trans and gauche (dOCCO ~30–40°) conformers with a low potential barrier to gauchegauche transition therefore it is impossible to exclude existence of the cis conformer (instead of gauche) with a very broad and flat potential minimum. For all the investigated excited electronic states of oxalyl chloridefluoride molecule calculations predicted the trans and cis conformers. The strong coupling of internal rotation around the C–C bond and non-planar vibrations of carbonyl fragments was found for the excited electronic states. The results of calculation were utilized for reanalysis of experimental \( \tilde{A}^{1} A^{\prime \prime} \leftarrow \tilde{X}^{1} A^{\prime} \) and \( \tilde{a}^{3} A^{\prime \prime} \leftarrow \tilde{X}^{1} A^{\prime} \) vibronic spectra reported in Kidd and King (J Mol Spectrosc 50:209–219 (1974), and ibid. 48:592–599 (1973)). The vibrational assignment that does not contradict the vibrational spectroscopy data and results of calculations was obtained.  相似文献   

15.
The microwave spectrum of propionyl chloride has been investigated in the region 18.0–40.0 GHz, and transitions due to a cis conformer have been assigned. This form has a heavy atom planar configuration and the methyl group and the carbonyl oxygen atom are cis to each other. Using the substitution structures of propionic acid and acetyl chloride as molecular models for the propionyl chloride molecule, good agreement is found between observed and calculateò effective rotational constants. For the 35Cl species satellite spectra assigned to the first four excited states of the C-C torsional mode have been observed together with the first excited state of the methyl torsional mode. The ground state spectrum has also been assigned for the 37Cl species. Relative intensity measurements yielded the lowest C-C torsional vibration frequency of 86 ± 10 cm?1. The CH3 internal rotation frequency was found to be 197 cm?1. Nuclear quadrupole coupling constants were determined for the ground state of the 35Cl and 37Cl species. From observed A-E splittings of bQ-branch transitions of the first excited state of the methyl torsional mode a barrier to internal rotation was estimated to be V3 = 2480 ± 40 cal mol?1 (867 ± 14 cm?1).  相似文献   

16.
The relative stability of the trans-and cis-isomers of 3,3′-diethylthiacarbocyanine (Dye1) and 3,3′-diethyl-9-methylthiacarbocyanine (Dye2)1, as well as sections of the potential energy surfaces along the internal coordinate of the isomerization reaction, were studied using the density functional theory. Calculation of the minimum energy pathway for the isomerization reaction showed that the barrier for rotation about the C8–C9 bond is higher for Dye1 than for Dye2. Local minimums were found for the singlet excited state of the 8,9-cis-and trans-isomers of the dyes. In the case of the trans-isomers, substantial changes in the dye structure do not occur and the local minimum of the excited state corresponds to the geometry of the starting trans-isomers, which favors efficient fluorescence. A search for the nearest local minimum of the singlet excited state of the 8,9-cis-isomers leads to structures, which differ significantly from the starting structures, and the intensity of the S1 → S0 transition in those structures appears to be practically zero. The results are in agreement with experimental data on the absorption, fluorescence, and fluorescence excitation spectra of the dyes.  相似文献   

17.
The barrier to internal rotation around the C-C bond in glyoxal, and the energy difference between the cis and the trans form of the molecule have been estimated using (7,34) and (9,54) Gaussian basis sets including polarization functions. The predicted energy of the cis form relative the ground state trans form was found to be substantially higher (4.9–6.3 kcal mol?1) than the experimental value of 3.2 kcal mol?1.  相似文献   

18.
In the past years extensive studies have been conducted on porphyrin-type photosensitizers because of their photosensitive activity. With regard to their interaction with many important macromolecules such as nucleic acids, proteins and lipids, porphyrin-type photosensitizers are capable of damaging numerous cells. They damage DNA via oxidation of four bases, especially guanine and cytosine pairs[1], damage protein by oxidation of (at least) two amino acids——cysteine and tryptophan residues…  相似文献   

19.
The mechanism of eosin-sensitized photoreduction of benzil with 1-benzyl-1,4-dihydronicotinamide — a model compound of NAD(P)H and the behavior of the excited states of eosin have been investigated. The effect of anthracene as a diffusion-controlled quencher of the photoreaction indicates that both excited triplet state and an unquenchable excited singlet state of eosin participated in the sensitized photoreaction. From the Stern-Volmer plot of quantum yield vs. anthracene concentration, the triplet reaction rate constant has been calculated to be 0.78 × 108 L M?1S?1 while the singlet reaction rate constant determined from quenching of eosin fluorescence by benzil is equal to 7.2 × 109 L M?1S?1. The singlet and triplet quantum yields are also determined to be 0.09 and 0.18 respectively. Since both the singlet and triplet energies of eosin are lower than that of benzil, energy transfer sensitization is not feasible. It is proposed that electron transfer from the excited eosin to benzil is responsible for the initiation.  相似文献   

20.
The first excited triplet state of DNA-intercalated ethidium bromide is produced with a quantum yield of 0.010.002 on irradiation at 532 nm. A difference extinction coefficient of 1.50.2103 m2 mol?1 is measured for the triplet state at 380 nm. Mercuric ions quench the first excited singlet state of DNA-intercalated ethidium bromide via induced spin orbit coupling to give an increased yield of ethidium triplet states. The same mercuric ion that quenches the singlet state then quenches the triplet state, via the same mechanism, with a rate constant of ca 3.5103 s?1. An upper limit for the rate of detachment of Hg2+ from its binding site in DNA may be fixed at ca 103 s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号