首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a model of complex band random matrices capable of describing the transitions between three different ensembles of Hermitian matrices: Gaussian orthogonal, Gaussian unitary and Poissonian. Analyzing numerical data we observe new scaling relations based on the generalized localization length of eigenvectors. We show that during transitions between canonical ensembles of random matrices the changes of statistical properties of eigenvalues and eigenvectors are correlated.  相似文献   

2.
3.
4.
5.
6.
7.
In recent years studies of aquatic locomotion have provided some remarkable insights into the many features of fish swimming performances. This paper derives a scaling relation of aquatic locomotion CD(Re)~2 =(Sw)~2 and its corresponding log law and power law. For power scaling law,(Sw)~2 = β_nRe~((2-1)/n), which is valid within the full spectrum of the Reynolds number Re=UL/v from low up to high, can simply be expressed as the power law of the Reynolds number Re and the swimming number Sw=ωAL/v as Re ∝ (Sw)~σ,with σ=2 for creeping flows,σ=4/3 for laminar flows, σ=10/9 and σ=14/13 for turbulent flows. For log law this paper has derived the scaling law as Sw ∝ Re=(lnRe+1.287), which is even valid for a much wider range of the Reynolds number Re. Both power and log scaling relationships link the locomotory input variables that describe the swimmer's gait A;ω via the swimming number Sw to the locomotory output velocity U via the longitudinal Reynolds number Re, and reveal the secret input-output relationship of aquatic locomotion at different scales of the Reynolds number.  相似文献   

8.
We consider magnetic fields generated by homogeneous isotropic and parity invariant turbulent flows. We show that simple scaling laws for the dynamo threshold, magnetic energy and Ohmic dissipation can be obtained depending on the value of the magnetic Prandtl number. To cite this article: S. Fauve, F. Pétrélis, C. R. Physique 8 (2007).  相似文献   

9.
We present analytical and numerical results for the level density of a certain class of random non-Hermitian matrices =H+i. The conservative partH belongs to the Gaussian orthogonal ensemble while the damping piece is quadratic in Gaussian random numbers and may describe the decay of resonances through various channels. In the limit of a large matrix dimension the level density assumes a surprisingly simple dependence on the relative strength of the damping and the number of channels. Moreover, we identify situations with cubic repulsion between the complex eigenvalues of , to within a logarithmic correction.  相似文献   

10.
11.
12.
The approximate scaling behavior suggested by recent measurements of electron scattering form factors and inelastic structure functions of few-body nuclei (mass 2, 3, 4) is discussed in a relativistic impulse approximation model. The model is a straightforward extension incorporating spin of a nucleon parton model introduced in recent works. We present results for electric and magnetic form factors as well as inelastic structure functions near threshold. The important corrections to scaling which are present in the preasymptotic regions are found to be well accounted for by the type of binding effects included in the phenomenologically constructed infinite-momentum frame nuclear wave functions. While predicted form factors are very sensitive to the parameters in the wave functions it does not appear possible to associate unambiguous dynamical meaning to these parameters. We find that spin effects bring significant and useful corrections.  相似文献   

13.
Scaling laws in aeolian sand transport   总被引:2,自引:0,他引:2  
We report on wind tunnel measurements on saltating particles in a turbulent boundary layer and provide evidence that over an erodible bed the particle velocity in the saltation layer and the saltation length are almost invariant with the wind strength, whereas over a nonerodible bed these quantities vary significantly with the air friction speed. It results that the particle transport rate over an erodible bed does not exhibit a cubic dependence with the air friction speed, as predicted by Bagnold, but a quadratic one. This contrasts with saltation over a nonerodible bed where the cubic Bagnold scaling holds. Our findings emphasize the crucial role of the boundary conditions at the bed and may have important practical consequences for aeolian sand transport in a natural environment.  相似文献   

14.
Simple scaling laws are useful tools in understanding the effect of changing parameters in MRI experiments. In this paper the general scaling behavior of the transverse relaxation times is discussed. We consider the dephasing of spins diffusing around a field inhomogeneity inside a voxel. The strong collision approximation is used to describe the diffusion process. The obtained scaling laws are valid over the whole dynamic range from motional narrowing to static dephasing. The dependence of the relaxation times on the external magnetic field, diffusion coefficients of the surrounding medium, and the characteristic scale of the field inhomogeneity is analyzed. For illustration the generally valid scaling laws are applied to the special case of a capillary, usually used as a model of the myocardial BOLD effect.  相似文献   

15.
This Letter describes an investigation of interfacial melting in ice-bearing granular flows. It is proposed that energy associated with granular collisions causes melting at an ice particle's surface, which can thus occur at temperatures well below freezing. A laboratory experiment has been designed that allows quantification of this process and its effect on the dynamics of a granular shear flow of ice spheres. This experiment employs a rotating drum, half filled with ice particles, situated in a temperature controlled laboratory. Capillary forces between the wetted melted particle surfaces lead to the clumping of particles and enhanced flow speeds, in turn leading to further melting. Dimensional analysis defines a parameter space for further experimentation.  相似文献   

16.
The inter-relations and the complexity of modern urban spaces are difficult to analyse in a way that allows improving living conditions or help to ascertain optimal decisions for saving energy or improving sustainability. Carefully designed decisions and guidelines might produce unexpected results because of particularities, or complex sets of reactions from residents or economic counterparts. Complexity tends to increase with size, such as when, for instance, services tend to concentrate in large agglomerations, and transportation needs take on critical importance. Complex systems such as living organisms are known to follow approximate relationships as scaling laws between the variables that describe them. Some of these kinds of relationships are tested in relation to modern developed urban spaces, in which it is possible to find a reasonable continuity with the types of scales seen in living organisms, and some preliminary conclusions are drawn.  相似文献   

17.
A fluid model is used to simulate ICP discharges in oxygen for a wide range of conditions under which commercial plasma-chemical reactors typically operate. Simple scaling laws are constructed with which different parameters of discharge plasmas in electronegative gases can be readily estimated from the given external parameters—the specific input power W and the product pL of the gas pressure and the characteristic plasma dimension.  相似文献   

18.
19.
A methodology for deriving the electrical and thermodynamic properties of plasma armatures in railgun launchers is presented. The methodology is based on the solution to the one-dimensional, quasi-steady equations for the plasma armature. It is shown that the thermodynamic and transport properties for typical armature materials can be adequately represented by power-law curve fits in the temperature and pressure regimes of interest. To illustrate the methodology, detailed computations for both copper and aluminum armatures are performed. Some discussion is also presented for hydrogen armatures. It is shown that the armature properties predicted by the scaling laws agree very well with those derived from more detailed numerical solutions to the governing differential equations. It is shown that, for both aluminum and copper armatures, the electrical conductivity is a strong function of the current per unit rail height and a weak function of launcher geometry. This dependence is shown to be in reasonable agreement with experimental data compiled over a wide range of gun bore dimensions and operating conditions  相似文献   

20.
LetQ n β be the law of then-step random walk on ?d obtained by weighting simple random walk with a factore for every self-intersection (Domb-Joyce model of “soft polymers”). It was proved by Greven and den Hollander (1993) that ind=1 and for every β∈(0, ∞) there exist θ*(β)∈(0,1) and such that under the lawQ n β asn→∞: $$\begin{array}{l} (i) \theta ^* (\beta ) is the \lim it empirical speed of the random walk; \\ (ii) \mu _\beta ^* is the limit empirical distribution of the local times. \\ \end{array}$$ A representation was given forθ *(β) andµ β β in terms of a largest eigenvalue problem for a certain family of ? x ? matrices. In the present paper we use this representation to prove the following scaling result as β?0: $$\begin{array}{l} (i) \beta ^{ - {\textstyle{1 \over 3}}} \theta ^* (\beta ) \to b^* ; \\ (ii) \beta ^{ - {\textstyle{1 \over 3}}} \mu _\beta ^* \left( {\left\lceil { \cdot \beta ^{ - {\textstyle{1 \over 3}}} } \right\rceil } \right) \to ^{L^1 } \eta ^* ( \cdot ) . \\ \end{array}$$ The limitsb *∈(0, ∞) and are identified in terms of a Sturm-Liouville problem, which turns out to have several interesting properties. The techniques that are used in the proof are functional analytic and revolve around the notion of epi-convergence of functionals onL 2(?+). Our scaling result shows that the speed of soft polymers ind=1 is not right-differentiable at β=0, which precludes expansion techniques that have been used successfully ind≧5 (Hara and Slade (1992a, b)). In simulations the scaling limit is seen for β≦10?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号