首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The generalized Newtonian fluid, as an important kind of non-Newtonian fluids, has been widely used in both science and engineering. In this paper, we present a multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid, and validate the model through a detailed comparison with analytical solutions and some published results. The accuracy and stability of the present model are also studied, and compared with those of the popular single-relaxation-time lattice Boltzmann model. Finally, the limit and potential of the multiple-relaxation-time lattice Boltzmann model are briefly discussed.  相似文献   

2.
A wall‐driven incompressible viscous flow in a ½ circular cavity is simulated, based on the lattice Boltzmann method (LBM). The treatment of curved boundary with second‐order accuracy is used. The force evaluation is based on the momentum‐exchange method. The streamlines and vorticity contours and the velocity component along the central line of a semi‐circular cavity are obtained for different Reynolds numbers. The numerical results show that the LBM can capture the formation of primary, secondary and tertiary vortices exactly as the Reynolds number increases and has a great agreement with those of current literatures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, the numerical models for swirling flows developed by Li et al and Zhou for lattice Boltzmann method (LBM) are chosen. These models were firstly validated using the Couette-Taylor flow between two concentric cylinders simulations. Numerical results showed the efficiency of the Zhou's model. Numerical simulation results using LBM are in good agreement for the steady and unsteady regimes compared to the literature review. In a second step, the Zhou model was then adopted to our study to determine the Couette-Taylor instabilities with an axial flow. Two protocols are tested. The first one (direct protocol) starts with an azimuthal flow without any axial flow (Re = 0). Once the regime is established, an axial flow is then superposed to the Couette-Taylor flow (with a sudden or a progressive manner). The second protocol (inverse protocol) starts with an axial flow at a given Reynolds number (Poiseuille flow). Once the regime is established, an azimuthal flow is the executed (with a sudden or a progressive manner). The effect of various parameters controlling the physical situation is also discussed. The increase of the azimuthal velocity mainly led to the emergence and development of Taylor vortices. Its influence decreases when the axial Reynolds number increases. The relevant result for this study is the change of the critical axial Reynolds number Rec (total disappearance of instabilities) with both protocols and both manners.  相似文献   

4.
In the paper, a numerical study on symmetrical and asymmetrical laminar jet-forced flows is carried out by using a lattice Boltzmann method (LBM) with a special boundary treatment. The simulation results are in very good agreement with the available numerical prediction. It is shown that the LBM is a competitive method for the laminar jet-forced flow in terms of computational efficiency and stability.  相似文献   

5.
A lattice Boltzmann method is developed for solute transport. Proper expressions for the local equilibrium distribution functions enable the method to be formulated on rectangular lattice with the same simple procedure as that on a square lattice. This provides an additional advantage over a lattice Boltzmann method on a square lattice for problems characterized by dominant phenomenon in one direction and relatively weak in another such as solute transport in shear flow over a narrow channel, where the problems can efficiently be approached with fine and coarse meshes, respectively, resulting in more efficient algorithm. The stability conditions are also described. The proposed method on a square lattice is naturally recovered when a square lattice is used. It is verified by solving four tests and compared with the analytical/exact solutions. They are in good agreement, demonstrating that the method is simple, accurate and robust for solute transport. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The lattice Boltzmann method (LBM) combined with the immersed boundary method is a common tool to simulate the movement of red blood cel ls (RBCs) through blood vessels. With very few exceptions, such simulations neglect the difference in viscosities between the hemoglobin solution inside the cells and the blood plasma outside, although it is well known that this viscosity contrast can severely affect cell deformation. While it is easy to change the local viscosity in LBM, the challenge is to distinguish whether a given lattice point is inside or outside the RBC at each time step. Here, we present a fast algorithm to solve this issue by tracking the membrane motion and computing the scalar product between the local surface normal and the distance vector between the closest LBM lattice point and the surface. This approach is much faster than, for example, the ray-casting method. With the domain tracking applied, we investigate the shape transition of a RBC in a microchannel for different viscosity contrast and validate our method by comparing with boundary-integral simulations.  相似文献   

7.
We prepose a 5-bit lattice Boltzmann model for KdV equation. Using Chapman-Enskog expansion and multiscale technique, we obtained high order moments of equilibrium distribution function, and the 3rd dispersion coefficient and 4th order viscosity. The parameters of this scheme can be determined by analysing the energy dissipation. The project supported by the Foundation of the Laboratory for Nonlinear Mechanics of Continuous Media, Institute of Mechanics, Chinese Academy of Sciences  相似文献   

8.
In this study, a numerical investigation of melting phenomenon with natural convection in a cavity with fin has been performed using enthalpy‐based lattice Boltzmann method. The lattice D2Q9 model was applied to determine the density and velocity fields, and the D2Q5 model for the temperature field. The effect of vertical position and length of the fin on the melting rate was studied. The simulations were carried out for Stefan number of 10, Rayleigh number of 10 5 and relative thermal conductivity (kfinkfluid) ranging from 5 to 30. The obtained results show that the rate of melting increases when the relative thermal conductivity and the length of the fin become greater. We also found that the variation of vertical position of the fin from bottom to middle has an insignificant effect on melting while it causes the increase of full melting time when the fin is mounted on the top of the cavity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The flow of water in a straight compound channel with prismatic cross section is investigated with a relatively new tool, the lattice Boltzmann method. The large eddy simulation model is added in the lattice Boltzmann model for nonlinear shallow water equations (LABSWETM) so that the turbulence, caused by lateral exchange of momentum in the shear layer between the main channel and floodplain, can be taken into account and modeled efficiently. To validate the numerical model, a symmetrical compound channel with trapezoidal main channel and flat floodplain is tested. Similar to most natural watercourses, the floodplain has higher roughness values than the main channel. Different relative depths, Dr (the ratio of the depth of flow on the floodplain to that in the main channel), are considered. The Reynolds number is set at 30 000 in the main channel. The lateral distributions of the longitudinal velocity, the boundary shear stress, the Reynolds stress and the apparent shear stress across the channel are obtained after the large eddy simulation is performed. The results of numerical simulations are compared with the available experiment data, which show that the LABSWETM is capable of modeling the features of flow turbulence in compound channels and is sufficiently accurate for practical applications in engineering. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
11.
In the present work, a simple large eddy simulation (LES)-based lattice Boltz- mann model (LBM) is developed for thermal turbulence research. This model is validated by some benchmark tests. The numerical results demonstrate the good performance of the present model for turbulent buoyant flow simulation.  相似文献   

12.
Heat transfer and fluid flow processes of natural convection melting of a phase change material are simulated numerically inside a partially heated square cavity. The momentum and energy equations are solved by using enthalpy-based lattice Boltzmann method combined with multi distribution function model. In this communication, the dependence of liquid fraction, temperatures of vertical nodes and average Nusselt number on the positions of heated plates is investigated quantitatively.  相似文献   

13.
Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes. The multi-relaxation-time lattice Boltzmann method(MRT-LBM) shows great numerical performance during simulation;however, the value method of the relaxation parameters needs to be specified. Therefore,in this study, a random forest(RF) model is used to discriminate the importance of different relaxation parameters to the convergence, and a support vector machine(SV...  相似文献   

14.
Based on the lattice Boltzmann (LB) approach, a novel hybrid method has been proposed for getting insight into the microscale characteristics of the multicomponent flow of nanofluid. In this method, the whole computational domain is divided into two regions in which different-sized meshes are involved for simulation (fine mesh and coarse mesh). The multicomponent LB method is adopted in the fine mesh region, and the single-component LB approach is applied to the coarse mesh region where the nanofluid is treated as a mixed single-component fluid. The conservation principles of mass, momentum and energy are used to derive a hybrid scheme across the different scaled regions. Numerical simulation is carried out for the Couette flow and convective heat transfer in a parallel plate channel to validate the hybrid method. The computational results indicate that by means of the present method, not only the microscopic characteristics of the nanofluid flow can be simulated, but also the computational efficiency can be remarkably improved compared with the pure multicomponent LB method.  相似文献   

15.
将光滑界面法引入到格子Boltzmann方法中分析粘弹性流体绕流问题,分别采用单松弛模型和对流扩散模型求解运动方程和Oldroyd-B本构方程,针对圆形和椭圆内部边界条件,给出连续界面插值函数,在此基础上,运用光滑界面法将内部边界转换为作用力项施加到演化方程中。首先分析圆柱绕流问题,给出不同材料参数情况下的流场分布和阻力系数计算结果,比较发现与宏观数值模拟结果相吻合。将模型拓展到绕椭圆流动中,分析椭圆形状和材料参数对粘弹性流体绕柱流的影响,发现随着椭圆长轴与短轴比值的增加和维森伯格数的增加,阻力系数逐渐下降,并且长短轴比对迭代收敛有较大影响。  相似文献   

16.
In this paper, we propose a novel incompressible finite-difference lattice Boltzmann Equation (FDLBE). Because source terms that reflect the interaction between phases can be accurately described, the new model is suitable for simulating two-way coupling incompressible multiphase flow. The 2-D particle-laden flow over a backward-facing step is chosen as a test case to validate the present method. Favorable results are obtained and the present scheme is shown to have good prospects in practical applications. The project supported by the National Natural Science Foundation of China (60073044), and the State Key Development Programme for Basic Research of China (G1999022207). The English text was polished by Guowei Yang and Yunming Chen.  相似文献   

17.
In this paper, we propose a novel incompressible finite-difference lattice Boltzmann Equation (FDLBE). Because source terms that reflect the interaction between phases can be accurately described, the new model is suitable for simulating two-way coupling incompressible multiphase flow. The 2-D particle-laden flow over a backward-facing step is chosen as a test case to validate the present method. Favorable results are obtained and the present scheme is shown to have good prospects in practical applications.  相似文献   

18.
In this paper, we present a simplified lattice Boltzmann method for non-Newtonian power-law fluid flows. The new method adopts the predictor-corrector scheme and reconstructs solutions to the macroscopic equations recovered from the lattice Boltzmann equation through Chapman-Enskog expansion analysis. The truncated power-law model is incorporated into this method to locally adjust the physical viscosity and the associated relaxation parameter, which recovers the non-Newtonian behaviors. Compared with existing non-Newtonian lattice Boltzmann models, the proposed method directly evolves the macroscopic variables instead of the distribution functions, which eliminates the intrinsic drawbacks like high cost in virtual memory and inconvenient implementation of physical boundary conditions. The validity of the method is demonstrated by benchmark tests and comparisons with analytical solution or numerical results in the literature. Benchmark solutions to the three-dimensional lid-driven cavity flow of non-Newtonian power-law fluid are also provided for future reference.  相似文献   

19.
20.
In this paper the dynamics of a two‐layered liquid, made of two immiscible shallow‐layers of different density, has been investigated within the framework of the lattice Boltzmann method (LBM). The LBM developed in this paper for the two‐layered, shallow‐water flow has been obtained considering two separate sets of LBM equations, one for each layer. The coupling terms between the two sets have been defined as external forces, acted on one layer by the other. Results obtained from the LBM developed in this paper are compared with numerical results obtained solving the two‐layered, shallow‐water equations, with experimental and other numerical results published in literature. The results are interesting. First, the numerical results obtained by the LBM and by the shallow‐water model can be considered as equivalent. Second, the LBM developed in this paper is able to simulate motion conditions on nonflat topography. Third, the agreement between the LBM (and also shallow‐water model) numerical results and the experimental results is good when the evolution of the flow does not depend on the viscosity, that is, during the initial phase of the flow, dominated by gravity and inertia forces. When the viscous forces dominate the evolution of the flow the agreement between numerical and experimental results depends strongly on the viscosity; it is good if the numerical LBM viscosity has the same order of magnitude of the liquid's kinematic viscosity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号