首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct tandem mass spectrometric (MS/MS) analysis of small, singly charged protein ions by tandem time-of-flight mass spectrometry (TOFMS) is demonstrated for proteins up to a molecular mass of 12 kDa. The MALDI-generated singly charged precursor ions predominantly yield product ions resulting from metastable fragmentation at aspartyl and prolyl residues. Additional series of C-terminal sequence ions provide in some cases sufficient information for protein identification. The amount of sample required to obtain good quality spectra is in the high femtomolar to low picomolar range. Within this range, MALDI-MS/MS using TOF/TOF trade mark ion optics now provides the opportunity for direct protein identification and partial characterization without prior enzymatic hydrolysis.  相似文献   

2.
The S-nitrosylation of proteins is involved in the trafficking of nitric oxide (NO) in intra- and extracellular milieus. To establish a mass spectrometric method for identifying this post-translational modification of proteins, a synthetic peptide and transthyretin were S-nitrosylated in vitro and analyzed by electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The intact molecular ion species of nitrosylated compounds was identified in the ESI mass spectrum without elimination of the NO group. However, the labile nature of the S-NO bond was evident when the in-source fragmentation efficiently generated [M + H - 30](+) ions. The decomposition was prominent for multiply charged transthyretin ions with high charge states under ordinary ESI conditions, indicating that the application of minimum nozzle potentials was essential for delineating the stoichiometry of nitrosylation in proteins. With MALDI, the S-NO bond cleavage occurred during the ionization process, and the subsequent reduction generated [M + H - 29](+) ions.  相似文献   

3.
This study presents matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) as a powerful tool to analyze and characterize oligonucleotides covalently linked to a solid support during their synthesis. The analysis of the fragment ions generated either in negative or positive mode allows direct and easy access to the nucleotide sequence and identification of the internucleosidic linkage. The mechanisms of the fragmentation of the solid-supported oligonucleotides induced by MALDI-TOFMS are discussed. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

4.
The use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) for the quantitative determination of phospholipid (PL) molecular species has been problematic, due primarily to the formation of multiple signals (corresponding to the molecular ion and other adducts) for some classes of PL. For example, analysis of phosphatidylcholine (PC) yielded signals that corresponded to protonated and sodiated molecules in the MALDI spectrum. The resulting spectral overlap among various molecular species (e.g. [PC(16:0/18:2) + Na] and [PC(18:2/18:3)]) made it impossible to ascertain their relative amounts using this technique. Other spectral ambiguities existed among different structural isomers, such as PC(18:1/18:1) and PC(18:0/18:2). We determined that molecular species could be resolved by MALDI-TOFMS by first removing the polar head (e.g. phosphocholine) from the phospholipid to effect production of only the sodiated molecules of the corresponding diacylglycerols (DAGs). Analysis of the resulting spectrum allowed unequivocal determination of the molecular species profile of PC from potato tuber and soybean. Estimation of fatty acid composition based on the molecular species determined by MALDI-TOFMS analysis agreed with that from GC-FID analysis. Post-source decay (PSD) was used to resolve standard isomers of PC (e.g. 18:1/18:1 vs. 18:0/18:2). Our results indicated that PSD is a useful approach for resolving structural isomers of PL molecular species.  相似文献   

5.
In our continuing studies to isolate water-soluble vacuolar pigments, we expect to elucidate more structural details using mass spectrometry (MS). Because of its sensitivity, only a small amount of pigment extracted from natural plants is required for MS measurement. Nuclear magnetic resonance is also a useful spectroscopic method for structural determination. In this study, two soft ionization techniques, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), on time-of-flight (TOF) mass spectrometers, were used to analyze five polyacylated anthocyanins with more than two aromatic acid molecules in the side chains. ESI is advantageous for the detection of individual molecular ions, while MALDI is essential for the detection of characteristic fragment ions originating from the anthocyanidin. Although 2,5-dihydroxybenzoic acid (DHBA) is an effective matrix in MALDI-TOFMS to obtain informative fragment ions of polyacylated anthocyanins, α-cyano-4-hydroxycinnamic acid (CHCA) is the preferred matrix for the identification of aglycones. In particular, in measurements of polyacylated anthocyanins with two acylated glycoside chains, fragment ions originating from anthocyanidin can only be observed in MALDI-TOFMS using CHCA as the matrix.  相似文献   

6.
A new method of matrix-assisted laser desorption/ionization (MALDI) sample preparation using a dual-spray electrospray deposition system is demonstrated and employed for the investigation of gas-phase cationization reactions in the MALDI plume. The dual-spray electrospray system is found to increase the homogeneity of the sample similarly to that of a conventional single-spray electrospray system. The dual-spray electrospray system allows for intimate mixing of separately prepared sample components and results in improved quantitative results. The development of this device also leads to the possibility of mixing sample components prepared in different solvents without the need to be concerned with solvent miscibility.  相似文献   

7.
Transition-metal acetylacetonate complexes of the form Metal(acac)(2), where Metal = Fe(II), Co(II), Ni(II), Cu(II), and Zn(II), and Metal(acac)(3), where Metal = V(III), Cr(III), Mn(III), Fe(III), and Co(III), were investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The data was acquired using the aprotic, electron transfer matrix, 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), and the observation of positive radical ions is shown clearly to depend on the metal element and the oxidation state it occupies. The ionization energy of DCTB was calculated to be 8.08 eV by density functional theory methods, which is notably lower than the experimental value, but within the range of other computational values. This value is very close to those of the analytes, so the existing electron transfer mechanism which is based on the ionization energies of the matrix and analyte, cannot be used predictively. Similarly, the data neither proves nor disproves the validity of the existing electron transfer ionization mechanism, with respect to metal coordination complexes without strong chromophores. In this case, periodic trends may be more useful in explaining the observed species and the prediction of species from sets of similar complexes. The addition of a sodium salt benefits the MALDI-TOFMS characterization of certain compounds studied, but the benefit of the addition of ammonium or silver salts is negligible.  相似文献   

8.
A novel method for acquisition and numerical analysis of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectral data is described. The digitized ion current transient from each consecutive laser shot is first acquired and stored independently. Subsequently, statistical correlation parameters between all stored transients are computed. We illustrate the uses of this event-by-event analysis method for studies of sample surface heterogeneity as well as for elucidating the mechanisms of ion formation in MALDI. Other potential applications of the method are also outlined.  相似文献   

9.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and laser desorption/ionization (LDI-)TOFMS have been used to characterize Suwannee River humic substances, obtained from the International Humic Substances Society (IHSS), and Armadale soil fulvic acid (ASFA). An array of MALDI matrices were tested for use with humic substances, including alpha-cyano-4-hydroxycinammic acid (CHCA), 2-(4-hydroxyphenylazo)benzoic acid (HABA), 2,5-dihydroxybenzoic acid (DHBA), sinapinic acid, dithranol and norharmane. DHBA yielded the best results, exhibiting superior ionization efficiency, low noise, broad applicability to the analytes of interest, and most importantly producing an abundance of high mass ions, the highest observed being m/z 1848. A number of sample preparation modes were investigated; the overlayer method improved sample/matrix homogeneity and hence shot-to-shot reproducibility. The choice of the matrix, mass ratio of analyte to matrix, and the sample preparation protocol, were found to be the most critical factors governing the quality of the mass spectra. Matrix suppression was greatly enhanced by ensuring good mixing of matrix and analyte in the solid phase, proper optimization of the matrix/analyte ratio, and optimizing delayed extraction to ensure complete matrix-analyte reaction in the plume before ions are moved to the flight tube. A number of common features, in particular specific ions which could not be attributed to the matrices or to contaminants, were present in the spectra of all the humic substances, regardless of origin or operational definition. Additionally, a prominent repeating pattern of peaks separated by 55, 114 and 169 Da was clearly observed in both LDI and MALDI, suggesting that the humic compounds studied here may have quasi-polymeric or oligomeric features.  相似文献   

10.
Mass spectrometry is widely applied in carbohydrate analysis, but still quantitative evaluation of data is critical due to different ionization efficiencies of the constituents in a mixture. Different size and chemical structure of the analytes cause their uneven distribution in droplets (electrospray ionization, ESI) or matrix spots (matrix-assisted laser desorption/ionization, MALDI). In addition, instrumental parameters affect final ion yields. In order to study and optimize the latter, an equimolar mixture of malto-oligosaccharides (DP1-6) was analyzed using varying target masses for ESI as well as different matrices and laser power for MALDI. The sodium adducts and derivatives for positive ion mode (hydrazones with Girard's T Reagent, GT) and negative ion mode (reductively aminated with o-aminobenzoic acid, oABA) were studied. Negatively charged oABA-labeled malto-oligosaccharides turned out to be unsuitable for quantification of the malto-oligomeric composition. Best agreement was achieved when applying target masses in the range of the highest homolog in the mixture in electrospray ionization ion trap (ESI-IT) (1-2% deviation with GT label or as Na(+) adducts). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) gave best results when the laser power was adjusted significantly over the desorption/ionization threshold (1% deviation with GT label). Both parameters show significant influence on the determined oligomeric composition. Consequently, estimation and even quantitative determination of amounts of oligosaccharides in a mixture can be achieved when the analytes are labeled and the proper instrumental parameters are used.  相似文献   

11.
The automated use of a matrix-assisted laser desorption ionization (MALDI) mass spectrometer (MS) is described for image analysis of samples through implementation of new software for instrument control, data acquisition, and data analysis. The software permits automated acquisition of MS MALDI spectra to form an ordered data array and contains display features to provide images at one or more mass-to-charge ratio values. The technique can be used to scan tissue samples, blotted samples, gels, or other sample surfaces where the image analysis of that sample is required. The program achieves a time of typically 1 s per image point, permitting an analysis made up of large numbers of points with high spatial resolution up to 850 dpi. The features of the software are demonstrated in this paper with samples of printed images, where visible images can be compared to those obtained by mass spectrometry. Quantitative aspects are introduced by analyzing a series of sample spots containing different amounts of several proteins.  相似文献   

12.
The intact fungal spores of several strains of four Aspergillus species, Aspergillus flavus, A. oryzae, A. parasiticus, and A. sojae, were directly analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. Very simple MALDI mass spectra are obtained by directly mixing spores with a matrix such as alpha-cyano-4-hydroxycinnamic acid or sinapinic acid. The mass spectra are obtained from the ablation of cell walls of spores owing to the acidity of the matrix solution. The MALDI results show that aflatoxigenic strains and non-aflatoxigenic strains have different mass peak profiles. Furthermore, the MALDI results of non-aflatoxigenic A. flavus and A. parasiticus spores resemble those of the closely related A. oryzae and A. sojae spores, respectively.  相似文献   

13.
A method for the detection of BPDE-d guanosine adducts using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is described and illustrated. The results indicate that MALDI is capable of detecting two other DNA benzopyrene adducts, which are trace products formed during the synthesis of BPDE-d guanosine. This MALDI-TOFMS method offers the potential for the detection of DNA adducts in human tissue using very limited sample purification and preparation.  相似文献   

14.
A variety of surfactants have been tested as matrix-ion suppressors for the analysis of small molecules by matrix-assisted laser desorption/ionization time-of flight mass spectrometry. Their addition to the common matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) greatly reduces the presence of matrix-related ions when added at the appropriate mole ratio of CHCA/surfactant, while still allowing the analyte signal to be observed. A range of cationic quaternary ammonium surfactants, as well as a neutral and anionic surfactant, was tested for the analysis of phenolics, phenolic acids, peptides and caffeine. It was found that the cationic surfactants, particularly cetyltrimethylammonium bromide (CTAB), were suitable for the analysis of acidic analytes. The anionic surfactant, sodium dodecyl sulfate, showed promise for peptide analysis. For trialanine, the detection limit was observed to be in the 100 femtomole range. The final matrix/surfactant mole ratio was a critical parameter for matrix ion suppression and resulting intensity of analyte signal. It was also found that the mass resolution of analytes was improved by 25-75%. Depth profiling of sample spots, by varying the number of laser shots, revealed that the surfactants tend to migrate toward the top of the droplet during crystallization, and that it is likely that the analyte is also enriched in this surface region. Here, higher analyte/surfactant concentration would reduce matrix-matrix interactions (known to be a source of matrix-derived ions).  相似文献   

15.
The identification of isoforms is one of the great challenges in proteomics due to the large number of identical amino acids preventing their separations by two-dimensional electrophoresis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has become a rapid and sensitive tool in proteomics, notably with the new instrumental improvements. In this study, we used several acquisition modes of MALDI-TOFMS to identify isoforms of porcine glutathiones S-transferase. The use of multiple proteases coupled to the different acquisition modes of MALDI-TOFMS (linear, reflectron, post-source decay (PSD) and in-source decay, positive and negative modes) allowed the identification of two sequences. Moreover, a third sequence is pointed out from a PSD study of a tryptic ion revealing the modification of the amino acid tyrosine 146 to phenylalanine.  相似文献   

16.
Structural characterization of arabinoxylans from wheat by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry using a Q-TOF mass analyser (ESI-Q-TOF) or an ion trap (IT) mass analyser is presented. An arabinoxylan sample digested with endoxylanase A was analysed using MALDI-TOF mass spectrometry (MS), resulting in the identification of molecular ions for structures with up to 22 monosaccharide residues. As the two-component monosaccharides xylose and arabinose are isobaric, structures differing in the number of arabinose branching residues were indistinguishable based on molecular mass and also fragmentation pattern upon collision-induced dissociation (CID). Permethylation followed by ESI-CID analyses using ITMS was performed to obtain structural information regarding the number of arabinose branching residues and their spatial arrangement along the xylose backbone. Analysis of the signal corresponding to an oligomer with six monosaccharide residues showed the presence of at least four isomeric structures differing in degree of branching and position of the branched residue relative to the cleavage site of the enzyme. This is the first demonstration of the use of ESI-ITMS for the structural characterization of arabinoxylan mixtures.  相似文献   

17.
18.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to generate highly reproducible mass spectral 'fingerprints' for twelve Penicillium species. Prior to MALDI-TOF MS analysis, eight replicate cultures of each Penicillium species were subjected to three one-minute bead-beating cycles in an acetonitrile/trifluoroacetic acid solvent. The mass spectra contained abundant peaks in the range of m/z 5000-20 000, and allowed unambiguous discrimination between species. In addition, a biomarker common to all Penicillium mass spectra was observed at m/z 13 900. Discriminant analysis using the MALDI-TOF MS data yielded classification error rates of 0% (i.e. 100% correct identification), indicating that MALDI-TOF MS data may be a useful diagnostic tool for the objective identification of Penicillium species of environmental and clinical importance.  相似文献   

19.
A two-step mass spectrometric method for characterization of phosphopeptides from peptide mixtures is presented. In the first step, phosphopeptide candidates were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) based on their higher relative intensities in negative ion MALDI spectra than in positive ion MALDI spectra. The detection limit for this step was found to be 18 femtomoles or lower in the case of unfractionated in-solution digests of a model phosphoprotein, beta-casein. In the second step, nanoelectrospray tandem mass (nES-MS/MS) spectra of doubly or triply charged precursor ions of these candidate phosphopeptides were obtained using a quadrupole time-of-flight (Q-TOF) mass spectrometer. This step provided information about the phosphorylated residues, and ruled out nonphosphorylated candidates, for these peptides. After [(32)P] labeling and reverse-phase high-performance liquid chromatography (RP-HPLC) to simplify the mixtures and to monitor the efficiency of phosphopeptide identification, we used this method to identify multiple autophosphorylation sites on the PKR-like endoplasmic reticulum kinase (PERK), a recently discovered mammalian stress-response protein.  相似文献   

20.
We describe a new interface for a prototype quadrupole-quadrupole-time-of-flight (TOF) mass spectrometer (Centaur, Sciex) that allows rapid switching between electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) modes of operation. Instrument performance in both modes is comparable (i.e., resolution approximately 10,000 FWHM, mass accuracy <10 ppm, sensitivity approximately 1 fmol) because the ion source is decoupled from the TOF mass analyzer by extensive gas collisions in the quadrupole stages of the instrument. The capacity to obtain side-by-side high quality ESI and MALDI mass spectra from a single proteolytic mixture greatly facilitates the identification of proteins and elucidation of their primary structures. Improved strategies for protein identification result from this ability to measure spectra using both ionization modes in the same instrument and to perform MS/MS on singly charged as well as multiply charged ions. Examples are provided to demonstrate the utility and performance of the modified instrument.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号