首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
Fe3+对KDP晶体生长影响的研究   总被引:9,自引:5,他引:4  
金属离子对KDP晶体的影响是多方面的.本文采用不同的过饱和度,在不同的Fe3+掺杂浓度的生长溶液中生长KDP晶体,定量地研究了Fe3+对KDP晶体生长的影响.实验发现,无论是在高过饱和度还是在低过饱和度下生长KDP晶体,在一定的浓度范围内,Fe3+的掺入既可以增加生长溶液的稳定性,又可以有效抑制晶体柱面的扩展,而且晶体基本不楔化,同时,对晶体光学性能的影响也不大.  相似文献   

2.
KDP晶体激光损伤阈值研究的新进展   总被引:6,自引:2,他引:4  
本文回顾了近10年来KDP晶体激光损伤阈值的研究进展,介绍了金属离子、瞬态双光子吸收对KDP晶体激光损伤阈值的影响,简述了金属离子和瞬态双光子吸收引起光热信号增强的关系,初步探讨了KDP晶体激光诱导损伤的机理,并对今后的发展方向提出了见解.  相似文献   

3.
在不同过饱和度的溶液中生长了KDP晶体,对生长晶体的透过率,光散射和激光损伤阈值进行了表征.研究了不同过饱和度对KDP晶体生长及光学性能的影响.实验表明:KDP晶体可以在高过饱和度(σ>3;)溶液中实现快速生长,生长速度可大于10 mm/d;但随着溶液过饱和度的增加,KDP晶体生长溶液的稳定性降低,晶体容易出现包藏、开裂和添晶等缺陷,晶体的光学性能也随之降低.  相似文献   

4.
Ca2 是KDP原料中一种常见的杂质离子,这种杂质不仅会影响晶体的生长过程,而且会加重晶体的光散射.通过传统降温法和点籽晶快速生长法生长不同Ca2 掺杂浓度的KDP晶体样品,对样品进行激光损伤实验,结果表明,Ca2 的存在降低了KDP晶体的光损伤阈值,其原因主要在于Ca2 掺杂导致晶体内部缺陷增多,内应力增加以及晶体中的散射颗粒密度增大使晶体光吸收加重.  相似文献   

5.
用降温法在不同的温度下快速生长KDP晶体,并测量其透过光谱、光学均匀性、金属杂质含量和光散射性能.结果表明随着生长温度的提高,KDP晶体的紫外光吸收和光散射点密度明显降低,但均匀性和杂质金属离子含量并无明显变化.  相似文献   

6.
KDP晶体激光损伤机理研究   总被引:1,自引:1,他引:0  
大口径KDP晶体是唯一可用作激光约束核聚变(ICF)中Pockels盒和倍频器件的晶体材料,但是低的抗激光损伤阈值使其应用受到了限制.本文从电子-空穴对的产生及稳定机制、光伤实体的本质等方面总结了多年来人们对KDP晶体激光损伤机理的研究进展,尤其从多光子电离、碰撞电离、激光加热三个方面定性阐述了电子-空穴对的产生机制, 而电子-空位对的稳定机制是探讨光损伤的关键步骤.另外从晶体生长过程及后处理两个方面初步讨论了提高光伤阈值和光学均匀性的途径.  相似文献   

7.
为了明确Al3+在KDP晶体生长过程中对光学性质和力学性质的具体影响,采用第一性原理计算程序包VASP软件计算并分析了Al取代K对KDP晶体的晶体结构、电子能态密度和光学性质,并同理想KDP晶体进行对比研究.结果表明,KDP晶体中Al取代K的缺陷形成能为0.974 eV,并且Al替位K点缺陷引起的晶格畸变非常微弱,缺陷比较容易形成. Al取代K后晶体能带中价带顶附近的态密度发生了变化,并且带隙中存在缺陷能级,取代后KDP晶体的带隙宽度减小为4.37 eV,缺陷增加了KDP晶体对可见到紫外波段的光子吸收,影响KDP晶体光学质量及其激光损伤性能.计算力学性质发现,Al替位掺杂KDP晶体比理想KDP晶体的杨氏模量增加了,这会减弱晶体抗激光损伤能力.  相似文献   

8.
离子束作用下KDP晶体表面粗糙度研究   总被引:1,自引:0,他引:1  
为了避免传统加工过程对KDP( Potassium dihydrogen phosphate)晶体表面产生损伤、嵌入杂质等降低晶体抗激光损伤阈值的不利因素,文章探索采用离子束抛光技术实现KDP晶体的加工.本文主要分析了离子束抛光作用下KDP晶体表面粗糙度的演变过程,采用垂直入射和倾斜45°入射两种方式研究KDP晶体表面粗糙度,利用倾斜45°入射的加工方式提高了KDP晶体的表面质量,其表面均方根粗糙度值由初始的3.07 nm减小到了1.95 nm,实验结果验证了离子束抛光加工KDP晶体的可行性.  相似文献   

9.
本文利用传统的降温法和"点籽晶"快速生长法在不同Na+掺杂浓度的溶液中生长KDP晶体,定量研究了Na+对KDP晶体生长的影响.实验发现:Na+的存在降低了溶液的稳定性,致使KDP晶体柱面容易扩展.Na+的存在对KDP晶体的光学性能基本没有影响.  相似文献   

10.
王圣来  丁建旭 《人工晶体学报》2012,(Z1):179-183,188
本文评述近年来了KDP晶体研究的重要进展,特别是不同种类的杂质对KDP晶体生长的影响及内在机理;综述了杂质对KDP晶体光学性能和力学性能的影响。  相似文献   

11.
By altering the concentration of a new additive ‐ diethylene triamine pentacetate acid (DTPA) in the growth solution, a series of KDP crystals were obtained by the “point seed” rapid growth method. The growth rates up to about 20 mm/day. Effects of DTPA on the growth habit and optical properties of these as‐grown KDP crystals were investigated. The results reveal that, with the increase of DTPA concentration in growth solution, the contents of impurity metal ions incorporated into crystal and aspect ratio of crystal morphology were both decreased gradually, while the UV transmittance of crystal was enhanced continually. In the presence of moderate concentration of DTPA (100–200 ppm), the solution stability was increased and optical properties of crystal (including optical homogeneity, light scattering and laser damage threshold) were all improved. However excessive doping (>500 ppm) has opposite effects. The impact mechanism was also analyzed combining with the structure of KDP crystal and chemical characteristics of DTPA molecular.  相似文献   

12.
KDP晶体中包裹体形成机制的探讨   总被引:8,自引:8,他引:0  
本文介绍了包裹体对KDP晶体质量的影响,并从两个方面探讨了KDP晶体生长过程中包裹体的形成机制.通过分析KDP晶体表面原子结构研究了不同杂质的吸附情况以及杂质对生长台阶的阻碍作用,通过分析晶体生长过程中流体动力学和质量输运条件的变化研究了旋转晶体的流体切应力和表面过饱和度,结果表明吸附杂质对生长台阶的阻碍和表面过饱和度的不均匀造成了生长台阶的弯曲和宏观台阶的形成,导致生长台阶形貌的不稳定是包裹体形成的重要原因.  相似文献   

13.
In this paper, DKDP crystals were grown from 80% deuterated solution by traditional temperature‐reduction method. The crystal samples were selected to test laser damage threshold (LDT) and laser conditioning of 1ω, 2ω and 3ω. We found that the laser conditioning of 3ω has much more effect on improving the LDT. The damage site was observed by microscope and its effects on micro‐structure and optical properties were also studied. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Potassium dihydrogen phosphate (KDP) crystals doped with xylenol orange (XO) and methylthymol blue (MTB) are grown from aqueous solutions by the method of solvent evaporation at room temperature under the conditions of natural convection and by the method of temperature lowering. Studied is the influence of the mother solution acidity on the character of the crystal coloration. The color and coloration intensity of the grown crystals are shown to strongly depend on the solution's pH. It is revealed that the crystal habit changes in the presence of organic dyes. The optical transmission spectra and the luminescence spectra of KDP:XO solutions and of the grown crystals are measured. The effect of thermal treatment and UV‐irradiation on the coloration stability of the crystals is studied. It is found that the laser damage threshold in the prismatic impurity rich colored sectors of KDP:XO is the same as that in the prismatic sectors of pure KDP crystals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Non linear optical (NLO) materials have acquired new significance with the advent of a large number of devices utilizing solid‐state laser sources. Several NLO materials have been used for this kind of technological applications. The Potassium di‐hydrogen phosphate (KDP) one of NLO material having superior non linear optical properties has been exploited for variety of applications. In the present investigation we have grown KDP crystals from aqous solution with thiourea, an organic non linear optical material. We could enhance the SHG efficiency of thiourea doped KDP crystal. It was 1.99 times more that of pure KDP. We observed more enhancements in nonlinearity for low concentration of thiourea.The crystal structure and cell parameters of grown crystal were determined from Powder XRD.The incorporation of thiourea in the grown crystals was qualitatively analyzed from FT‐IR study. The absorption spectra of pure and thiourea doped KDP crystal reveal that thiourea doped KDP crystals would be a better nonlinear optical (NLO) material for second harmonic generation (SHG) than pure KDP. The thermal decomposition and weight loss of pure and thiourea doped KDP crystal was observed by thermogravimetric (TGA) analysis and Differential Scanning Calorimetry (DSC). The high frequency dielectric study of pure KDP crystal, thiourea doped KDP crystals and organic additive thiourea was carried out using X‐band at frequency 8GHZ and 12GHZ by transmission line wave guide method. We observed low dielectric constant of thiourea doped KDP crystal when it is doped with 2mole% of thiourea. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Optically transparent formic acid (FA) doped potassium dihydrogen phosphate (KDP) crystal of dimension 21×15×9 mm3 has been grown by slow evaporation solution technique (SEST). The X‐ray diffraction (XRD) technique was used to confirm the cell parameters and the shifts in peak positions of identified reflecting planes. The incorporation of FA in KDP has been qualitatively analyzed by fourier transform infrared analysis. The UV‐visible absorption spectrum of crystals has been recorded in the range of 200 to 900 nm and the doped KDP crystal is found to have improved optical parameters than pure KDP. The color centered photoluminescence emission spectrum of grown crystal has been illustrated in visible region. The mechanical behavior of pure and doped KDP crystal has been investigated using the Vicker's microhardness analyzer and hardness parameters have been calculated. The effect of FA on thermal stability of KDP crystal was examined by means of thermogravimetric and differential thermal analysis. The temperature dependent dielectric behavior of crystals was studied.  相似文献   

17.
KDP/DKDP晶体具有生长方法简单、成本较低、光学性能良好等优点,而可生长出的超大尺寸KDP/DKDP晶体是目前唯一可用于高功率激光工程的单晶材料。但是在晶体的生长过程中存在很多影响因素,同时对晶体进行后处理也会影响晶体的性能,这都直接关系到超大尺寸KDP/DKDP晶体的实际应用。鉴于此,本文综述了近些年超大尺寸KDP/DKDP晶体的重要研究进展, 特别是针对传统生长和快速生长中存在的问题和相应的解决对策以及晶体性能相关的研究,并重点对晶体的透过率、氘化率、激光诱导损伤等进行了分析和讨论。  相似文献   

18.
L-asparagine monohydrate (LAM), a new amino acid single crystal, was grown by slow evaporation solution technique (SEST) as well as by recently invented Sankaranarayanan–Ramasamy (SR) method in aqueous medium. Using SR method, LAM single crystal of diameter ∼18 mm and length ∼52 mm was grown for the first time. The growth conditions were optimized and the maximum growth rate of 1.0 mm per day was observed for the SR crystal. The crystal structure was confirmed by powder XRD. The crystalline perfection was assessed by high resolution XRD and etching studies and found that the quality of the SR crystal is better than the SEST crystal. The UV–vis–NIR spectroscopic study revealed that the SR crystal has good optical transparency than that of SEST crystal. The relative second harmonic generation efficiency was measured and found to be ∼0.35 times to that of KDP. The laser damage threshold (LDT) was measured and found that the SR crystal has higher LDT value (5.76 GW cm−2) than SEST crystal (4.75 GW cm−2). The Vickers’s microhardness and dielectric studies were also carried out and discussed.  相似文献   

19.
Potassium Acetate (CH3COOK) and Potassium Citrate (K3C6H5O7) as new additives were added into the potassium dihydrogen phosphate (KDP) solutions in different molar ratios. The metastable zone width and induction period with and without these additives were determined and compared. Dielectric measurements on pure and doped KDP crystals at various temperatures ranging from 313 to 423 K were carried out by the conventional parallel plate capacitor method which results low dielectric constant value dielectrics in doped crystals. The high resolution XRD studies show that CH3COOK doped KDP crystal and K3C6H5O7 doped KDP crystal do not contain any internal structural grain boundaries and indicates that the crystalline perfection is very good. Moreover, the addition of these potassium additives improves the quality of the crystal and yields highly transparent crystals with well defined features. The effect of additives on the growth, nucleation kinetics, structural, NLO and optical properties has been investigated. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号