首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present here a continuum model for the evolution of the total dislocation density in the framework of rate-independent plasticity. Three basic physical features are taken into account: (i) the role of dislocation densities on hardening; (ii) the relations between the slip velocity and the mobility of gliding dislocations; (iii) the energetics of self and mutual interactions between dislocations. We restrict attention to plastic processes corresponding to single slip. Numerical simulations showing the formation of bands are also presented.  相似文献   

2.
We apply the nonlinear dislocation theory to the problem of antiplane constrained shear in a single crystal with one slip system. By taking dissipation into account, the relaxed energy functional has to be minimized. We show that, up to a threshold strain, no dislocations are nucleated and therefore the plastic slip is zero. Since this threshold value depends on the width of the specimen, a size effect takes place. The stress strain curve turns out to be a hysteresis loop exhibiting the work hardening due to the dislocation pile-up. It is shown that the Bauschinger effect holds true. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The motion and interaction of dislocation lines are the physical basis of the plastic deformation of metals. Although ‘discrete dislocation dynamic’ (DDD) simulations are able to predict the kinematics of dislocation microstructure (i.e. the motion of dislocations in a given velocity field) and therefore the plastic behavior of crystals in small length scales, the computational cost makes DDD less feasible for systems larger than a few micro meters. To overcome this problem, the Continuum Dislocation Dynamics (CDD) theory was developed. CDD describes the kinematics of dislocation microstructure based on statistical averages of internal properties of dislocation systems. In this paper we present a crystal plasticity framework based on the CDD theory. It consists of two separate parts: a classical 3D elastic boundary value problem and the evolution of dislocation microstructure within slip planes according to the CDD constitutional equations. We demonstrate the evolution of dislocation density in a micropillar with a single slip plane. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The complex interplay between dislocations and deformation-induced twinning leads to a relatively poor formability of magnesium at room temperature. For understanding the complicated behavior of this metal, a novel model is presented. It is based on a variational principle. Within this principle based on energy minimization, dislocation slip is modeled by crystal plasticity theory, while the phase decomposition associated with twinning is considered by sequential laminates. The proposed model captures the transformation of the crystal lattice due to twinning in a continuous fashion by simultaneously taking dislocation slip within both, possibly co-existent, phases into account. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The multi-scale analysis of fracture toughness of ferroelectric ceramics under complicate mechanical–electrical coupling effect is carried out in this paper. The generalized stress intensity factor (SIF) arising from spontaneous strains and polarization transformation in switching domain zones is accurately obtained by using an extended Eshelby theory. Taking BaTiO3 ferroelectric ceramic for example, it is discovered that the crack propagation can be induced by domain switching arising from negative electrical field when the crack surface is parallel to the isotropic plane, and the obtained critical electric displacement intensity factor (EDIF) approximates closely to that obtained by the Green’s function method. Additionally, as pinning dislocations and slip dislocations can strongly influence properties of ferroelectric devices and induce the property degradation, it is necessary to investigate the dislocation toughening effects on fatigue and fracture mechanisms. The results show that the dislocation shielding and anti-shielding effects on mode II SIF, mode I SIF and EDIF are obviously different when a dislocation locates at a position near the crack tip. Through the calculation of the critical applied EDIF for crack propagation by using mechanical energy release rate (MERR) theory, it is discovered that the slip angles obviously influence fracture toughness, and the mode II SIF arising from dislocation has little influence on fracture toughness, however, the mode I SIF and EDIF arising from dislocation have great influences on fracture toughness.  相似文献   

6.
Some general results in the theory of crystallographic slip   总被引:1,自引:0,他引:1  
Crystallographic slip of a Bravais lattice is analyzed utilizing the main results of a recently constructed theory of structured solids, where explicit account is taken of the influence of dislocation density identified in terms of Curl of plastic deformationG p . In the present paper, the scope of the subject is enlarged to also include defects (other than dislocations) such as substitutional impurities and vacancies and it is shown that these point defects may also be characterized in terms of the plastic deformation fieldG p . Several general results pertaining to the kinematics and kinetics of Crystallographic slip are proved within the scope of an appropriate constraint theory suitable for Crystallographic slip; the latter is motivated by the well-known basic mechanism of Crystallographic slip that constrains the admissible modes of plastic deformation. The constraint responses (or forces) that are necessary to maintain the active slip systems, as well as the conditions for the transitions between the slip systems, are determined. In spite of the nature of the assumption pertaining to the mechanism of Crystallographic slip on distinct slip systems, it is shown that the yield surface does not necessarily exhibit sharp corners. Instead, the shape of the yield surface is in the form of hyperplanes joined by round corners. In fact, the presence of sharp corners is mainly a result of the use of a special set of constitutive assumptions. The predictive capability of the theoretical results is further illustrated by using a two-dimensional crystal subjected to simple shear. The effect of the initial dislocation density on the response of the sheared-crystal is studied by carrying out detailed calculations for two substantially different initial dislocation densities. The calculations show that while the response of the crystal is sensitive to the initial dislocation density in the early stages of deformation, its influence diminishes with progressively larger deformations. Furthermore, the crystal exhibits a well-defined shear band which evolves naturally due to the presence of initial dislocation distribution and is easily visible at large deformations.  相似文献   

7.
On a microscopic length scale dual-phase steels exhibit a polycrystalline microstructure consisting of ferrite and martensite. In this work a material model for the temperature dependent hardening behaviour of the ferritic phase is presented. As the dislocation structure determines the resistance to dislocation glide, dislocation densities are introduced as state variables to capture the dependence of the material behaviour on the loading history. Motivated by the elementary processes of multiplication by the Frank-Read-mechanism and annihilation by cross-slip, evolution equations for the dislocation densities are introduced. Based on the interaction of dislocations on different slip systems and the Peierls-stress, the resistance to dislocation motion with its temperature dependence is formulated to describe the hardening behaviour. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The macroscopic mechanical behavior of many materials crucially depends on the formation and evolution of their microstructure. In this work, we consider the formation and evolution of laminate deformation microstructure in plasticity. Inspired by work on the variational modeling of phase transformation [5] and building on related work on multislip gradient crystal plasticity [9], we present a new finite strain model for the formation and evolution of laminate deformation microstructure in double slip gradient crystal plasticity. Basic ingredients of our model are a nonconvex hardening potential and two gradient terms accounting for geometrically necessary dislocations (GNDs) by use of the dislocation density tensor and regularizing the sharp interfaces between different kinematically coherent plastic slip states. The plastic evolution is described by means of a nonsmooth dissipation potential for which we propose a new regularization. We formulate a continuous gradient-extended rate-variational framework and discretize it in time to obtain an incremental-variational formulation. Discretization in space yields a finite element formulation which is used to demonstrate the capability of our model to predict the formation and evolution of laminate deformation microstructure in f.c.c. Copper with two active slip systems in the same slip plane. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The plane strain shear of a single crystal strip with one active slip system placed in a mixed device with one clamped and one free boundary is considered. Since dislocations pile up against only the clamped boundary, the plastic yielding and work hardening differ essentially from those of a hard device, showing clearly their sensitivity to the boundary conditions. An analytical solution to this problem within continuum dislocation theory is found explicitly which exhibits the energetic and dissipative thresholds for dislocation nucleation, the Bauschinger translational work hardening, and the size effects. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In [Sv1] a new micromechanical approach to the prediction of creep flow in composites with perfect matrix/particle interfaces, based on the nonlinear Maxwell viscoelastic model, taking into account a finite number of discrete slip systems in the matrix, has been suggested; high-temperature creep in such composites is conditioned by the dynamic recovery of the dislocation structure due to slip/climb motion of dislocations along the matrix/particle interfaces. In this article the proper formulation of the system of PDE's generated by this model is presented, some existence results are obtained and the convergence of Rothe sequences, applied in the specialized software CDS, is studied.  相似文献   

11.
Plastic deformation of crystalline materials is the result of the motion and interaction of dislocations. Continuum dislocation dynamics (CDD) defines flux-type evolution equations of dislocation variables which can capture the kinematics of moving curved dislocations. Coupled with Orowan's law, which connects the plastic shear rate to the dislocation flux, CDD defines a dislocation density based material law for crystal plasticity. In the current work we provide simulations of a micro-bending experiment of a single crystal and compare the results qualitatively to those from discrete dislocation simulations from the literature. We show that CDD reproduces salient features from discrete dislocation simulations regarding the stress distribution, the dislocation density and the accumulated plastic shear, which would be hard to obtain from more traditional crystal plasticity constitutive laws. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A small-deformation strain gradient plasticity (GP) model for single-crystals has been proposed in [1], including a grain boundary (GB) yield condition without hardening. It has been extended by a hardening term for the GBs after a comparison to discrete dislocation dynamics (DDD) results in [2]. Differences between the strain gradients of the GP results and the DDD results motivate the consideration of a non-quadratic defect energy [3] in the GP model. It is shown that the gradients in the GP model can be improved using an exponent different from two. Remaining discrepancies in the strain profiles, compared to the DDD results, are attributed to the neglect of the individual gradients of plastic slip and due to the lack of a mechanism for the misorientation-dependent elastic interactions of dislocations across GBs [4] in the GP model. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The problem of the stress state of a thin elastic plate, containing dislocations and disclinations, is considered using Kirchhoff's theory. The problem of the equilibrium of a multiply connected plate with Volterra dislocations with specified characteristics is formulated. The problem of the flexure of an annular slab resulting from a screw dislocation and a twisting disclination is solved. The solutions of problems of concentrated (isolated) dislocations and disclinations in an unbounded plate as well as the dipoles of dislocations and disinclinations are found. It is shown that a screw dislocation in a thin plate is equivalent to the superposition of two orthogonal dipoles of torsional disclinations. By taking the limit from a discrete set of defects to their continuous distribution, a theory of thin plates with distributed dislocations and disclinations is constructed. Solutions of problems of the flexure of circular and elliptic plates with continuously distributed disclinations are obtained. An analogy is established between the problem of the flexure of a plate with defects and the plane problem of the theory of elasticity with mass forces, and also between a plane problem with dislocations and disclinations and the problem of the flexure of a plate with specified distributed loads.  相似文献   

14.
Khanh Chau Le  Pramio Sembiring 《PAMM》2008,8(1):10463-10464
The plane constrained shear problems of a single crystal strip with one and two active slip systems are considered within the continuum dislocation theory. Analytical solutions are found for single slip and symmetric double slip systems which exhibit the energetic and dissipative thresholds for dislocation nucleation, the Bauschinger translational work hardening and the size effect. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The interactions between individual dislocations contribute significantly to size effects as observed at the plastic deformation of miniaturized structures. When employing a crystal plasticity framework, these interactions are usually captured by an additional balance relation. In this paper we study two approaches to capture dislocation interactions in crystal plasticity that differ by the conservation of dislocations. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Within continuum dislocation theory the plane constrained uniaxial extension of a single crystal strip deforming in single or double slip is analyzed. For the single and symmetric double slip, the closed-form analytical solutions are found which exhibits the energetic and dissipative thresholds for dislocation nucleation, the Bauschinger translational work hardening, and the size effect. Numerical solutions for the non-symmetric double slip are obtained by finite element procedures. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
This paper is concerned with a result of homogenization of an integro-differential equation describing dislocation dynamics. Our model involves both an anisotropic Lévy operator of order 1 and a potential depending periodically on u/?. The limit equation is a non-local Hamilton–Jacobi equation, which is an effective plastic law for densities of dislocations moving in a single slip plane.  相似文献   

18.
Peter Gladbach 《PAMM》2015,15(1):545-546
We establish a line-tension energy for dislocation networks concentrated in finitely many parallel slip planes as the limit of a Peierls-Nabarro energy. Dislocations in different planes interact depending on their distance. At intermediate distances a two-scale dislocation microstructure is optimal. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
A system of equations describing mobile defects in a two-dimensional Cosser at continuum, i.e. in a medium whose motion is determined by the displacement field and rotation field independent of it, is obtained.

The basic equations of the static theory /1–5/ and dynamic continuous theory /6–12/ of defects (dislocations and disclinations) are known for a three-dimensional medium, obtained by a variety of methods. A dislocation model of the misalignment surfaces used in describing the Martensitic transformations /2, 13/ is proposed. The dislocation representations were used in /14–16/ to describe the grain boundaries, and the difference dislocations within the boundaries of separation were studied in /17, 18/. The dislocation structure of internal boundaries of separation was described in /19, 20/ using the differential geometry characteristics (torsion and curvature tensors, non-holonomic object) of three-dimensional media. Surface dislocations and disclinations of the separate Volterra distortions-type were studied in /21/, with liquid crystals and various biological objects indicated as the suitable areas of application of these concepts.  相似文献   


20.
Motion of screw dislocations in BCC materials at low temperature is believed to be related to the formation of mobile kinks on the dislocation line. Therefore, the accurate prediction of kink nucleation energies is required to fully describe mobility of screw dislocations in these materials. Studies of fundamental dislocation processes at atomic length scale are numerically and computationally intensive problems. This work studies the calculation of zero-stress formation energies of kink-pair configurations for BCC crystals. Our model for stored energy associated to a dislocation line configuration is based on the theory of discrete dislocations of Ariza and Ortiz. Its value is computed efficiently using an algorithm developed on the NVIDIA Compute Unified Device Architecture (CUDA). Results confirm those obtained using atomistic potentials and first principles calculations, and those based on the continuum theory of dislocations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号