首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The periodic perturbation method is applied to predict shear viscosities of liquid 1,4-butanediol, 1,3-butanediol, 1,2-butanediol, 2-methyl-1,3-propanediol and 1,2,4-butanetriol under two thermodynamical conditions: T = 373 K, P = 0.1 MPa and T = 373 K, P = 250 MPa. A linear dependence of the calculated shear viscosities with respect to the applied perturbation forces is identified. Based on this finding, extrapolation of the calculated viscosities to zero perturbation force is applied to estimate the shear viscosities for the “undisturbed” fluids. The uncertainties of the estimates are calculated using the block average method. The predicted values compare favorably with the experimental data. Although the force field is optimized using equilibrium properties (liquid densities and vaporization enthalpies), calculated results demonstrate that the force field can be used to predict the kinetic properties accurately. The force field parameters are well transferable among different state points. However, transferring parameters among different molecules should be executed with caution.  相似文献   

2.
3.
Isothermal bubble and dew points, saturated molar volumes, and mixture critical points for binary mixtures of carbon dioxide+chloroform (trichloromethane) (CO2/CHCl3) have been measured in the temperature region 303.15–333.15 K and at pressures up to 100 bar. Mixture critical points are reported at 313.15, 323.15, and 333.15 K. The data were modeled with the Peng–Robinson equation of state using both the van der Waals-1 (vdW-1) mixing rule and the Wong–Sandler (WS) mixing rule incorporating the UNIQUAC excess free energy model. The WS mixing rule provided a better representation of the data than did the vdW-1 mixing rule, though with three adjustable parameters instead of one. The extrapolating ability of both of the mixing rules was investigated. Using the parameters regressed at 323.15 K, the WS mixing rule yielded better extrapolations for the composition dependence at 303.15, 313.15, and 333.15 K than the vdW-1 mixing rule.  相似文献   

4.
Vapor pressures of four pure pentaerythritol esters, PE, pentaerythritol tetrapentanoate, pentaerythritol tetraheptanoate, pentaerythritol tetranonanoate and pentaerythritol tetra 2-ethylhexanoate were measured between 334 and 476 K in a recently developed gas saturation apparatus. The experimental vapor pressure values for the four polyolesters range from 5.6 × 10−5 Pa to 0.94 Pa. These data together with density values were used to determined SAFT and PC-SAFT characteristic parameters. The linearity of molecular parameters for both models with the molecular weight permits to interpolate and extrapolate these parameters for pentaerythritol ester with linear chains. For pentaerythritol esters with ethyl-alkanoic chains, the parameters of SAFT and PC-SAFT have been estimated assuming that the slope of these straight lines is the same for PEs with linear chains that for PE with branched chains. This procedure was used to predict density of commercial POEs, estimating the molecular weight when it is not available from the viscosity at 313.15 K. PC-SAFT gives better performances than SAFT to predict density data for these four compounds at high pressures and for other PEs at atmospheric pressure. Furthermore, characteristic parameters for Soave-Redlich-Kwong and Peng Robinson EoSs were also estimated from the experimental vapor pressures and literature density values.  相似文献   

5.
As our entry for the third industrial fluid property simulation challenge, the COSMO-RS method in its COSMOtherm implementation has been used to predict the vapor liquid equilibrium (VLE) of ethanol and 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) at 343.13 K. The absolute prediction of the VLE without any system specific adjustments already yields a reasonable agreement with the experimental data provided for the binary mixture at 283.17 K. Because the special emphasis of the this challenge is state conditions transferability, we also considered two special ways of fine tuning to the experimental data provided for this VLE at 283.17 K. The first way of fine tuning was by fitting of correction charges, the second was by adjustment of a single van der Waals (vdW) interaction parameter. Since vdW parameters used in COSMOtherm are the weakest part of the COSMO-RS parameterization, the fine tuning of the vdW parameters is considered as physically most plausible. Therefore our final prediction of the VLE ethanol and HFC-227ea at 343.13 K is based on the vdW fine tuning.  相似文献   

6.
A method for predicting an analytical equation of state for polymer mixtures and blends from surface tension and liquid state density at normal (ordinary) temperature (γn, ρn), as scaling constants, is presented. B2(T) follows a promising corresponding-states principle. Calculation of (T) and b(T), the two other temperature-dependent constants of the equation of state, are made possible by scaling. As a result, γn and ρn are sufficient for determination of thermophysical properties of polymer mixtures and blends.

We applied the procedure to predict liquid density of poly(ethylene glycol) (PEG-200) + 1-octanol solutions and poly(propylene glycol) (PPG) + poly(ethylene glycol) (PEG-200) blends at compressed state with temperature range from 298.15 to 338.15 K and pressures up to 40 MPa. In this work, the ISM EoS is extended to polymer mixtures and blends as well as pure case without proposing any mixing rule.  相似文献   


7.
Equilibrium and non-equilibrium molecular dynamics and Monte Carlo simulation techniques were applied to predict various thermodynamic, transport and vapor-liquid equilibrium properties of binary mixtures of ethylene glycol and water (EG-W) based on OPLS-AA and SPC/E force fields. The properties predicted include density, vaporization enthalpy, enthalpy of mixing, heat capacities, diffusion coefficients, shear viscosities, thermal conductivities, vapor-liquid coexistence isotherms and isobaric curves, and saturation vapor pressures. Good agreements with experimental data were obtained for most of these properties. Errors are mostly related to inaccuracy found in predictions of pure fluids; a correction to prediction of pure substance can systematically improve prediction for the mixture. This work suggests that OPLS-AA and SPC/E force fields using the common combining rules are transferable for predicting multiple physical properties of EG-W mixtures.  相似文献   

8.
The Peng–Robinson cubic equation of state (CEOS) is widely used to predict thermodynamic properties of pure fluids and mixtures. The usual implementation of this CEOS requires critical properties of each pure component and combining rules for mixtures. Determining critical properties for components of heavy asymmetric mixtures such as bitumen is a challenge due to thermolysis at elevated temperatures. Group contribution (GC) methods were applied for the determination of critical properties of molecular representations developed by Sheremata for Athabasca vacuum tower bottoms (VTB). In contrast to other GC methods evaluated, the Marrero–Gani GC method yielded estimated critical properties with realistic, non-negative values, followed more consistent trends with molar mass and yielded normal boiling points consistent with high temperature simulated distillation data. Application of classical mixing rules to a heavy asymmetric mixture such as bitumen yields saturated liquid density and bubble pressure estimates in qualitative agreement with experimental data. However the errors are too large for engineering calculations. In this work, new composite mixing rules for computing co-volumes of asymmetric mixtures are developed and evaluated. For example, composite mixing rules give improved bubble point predictions for the binary mixture ethane + n-tetratetracontane. For VTB and VTB + decane mixtures the new composite mixing rules showed encouraging results in predicting bubble point pressures and liquid phase densities.  相似文献   

9.
Phase equilibria of carbon dioxide + poly ethylene glycol (PEG) of average mol weight 6000 g/mol + water mixtures has been measured by the static method at conditions of interest for the development of Particles from Gas Saturated Solutions (PGSS)-drying processes (pressure from 10 MPa to 30 MPa, temperature from 353 K to 393 K). A thermodynamic model based on the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state has been developed for correlating experimental data. The model is able to predict the composition of the liquid phase with an average deviation of 8.0%. However, the model does not calculate correctly the concentration of PEG in the gas phase. The model is also capable of predicting VLE data reported in the literature of PEG + CO2 mixtures with PEGs of molecular weights ranging from 1500 g/mol to 18500 g/mol as well as solid–fluid equilibrium of carbon dioxide + PEG mixtures at pressures below 10 MPa.  相似文献   

10.
Solubility measurements of sulfur compounds in supercritical fluids are required in order to determine the feasibility of supercritical extraction for removing them from gasoline and diesel fuel. In this work, solubility of thiophene in CO2 and in CO2 + 1-propanol mixtures were measured from 313 to 363 K using an apparatus based on the static–analytical method. Vapor–liquid equilibria (VLE) data of binary mixtures were fitted to the Peng–Robinson equation of state (EoS) with classical mixing rules. The binary interaction parameters (kij) obtained were used to predict the VLE data of ternary systems. The calculated values given by this simple model agree well to the experimental data.  相似文献   

11.
A new general equation of state recently reported for pure liquids has been developed to predict the volumetric and thermodynamic properties of six binary and two ternary liquid refrigerant mixtures (including HCs and HFCs mixtures) at different temperatures, pressures, and compositions. The results show this equation of state can be used to reproduce and predict different thermodynamic properties of liquid refrigerant mixtures within experimental errors. The composition dependence of the parameters of this equation of state has been assumed as quadratic functions of mole fraction. Using these mixing rules, the agreement between calculated and experimental densities is better than 0.6% for binary mixtures and 2.3% for ternary mixtures. To compare the performance of this new equation of state against other well-known methods such as the COSTALD method, the density of some refrigerant mixtures, for which the parameters of COSTALD were available, has been computed and compared with those of this new equation of state.  相似文献   

12.
《Fluid Phase Equilibria》2004,220(1):41-46
Vapor–liquid equilibria and critical point data for the system 1-propanol+n-hexane at 483.15, 493.15, 503.15 and 513.15 K are reported. The critical pressures determined from the critical opalescence of the mixture were compared with published data for the system 2-propanol+n-hexane. Phase behavior measurements were made in a modified circulating type apparatus with a view cell. These mixtures are highly nonideal because of the hydrogen bonding of 1-propanol. Modeling of the experimental data has been performed using the multi-fluid nonrandom lattice fluid with hydrogen-bonding (MF-NLF-HB) equation of state and the Peng–Robinson–Stryjek–Vera (PRSV) equation of state with Wong–Sandler mixing rule. The critical points and the critical locus were also calculated.  相似文献   

13.
The phenomenology of sound speeds in fluid mixtures is examined near and across critical lines. Using literature data for binary and ternary mixtures, it is shown that the ultrasound speed along an isotherm-isopleth passes through a minimum value in the form of an angular (or V-shaped) point at critical states. The relation between critical and pseudo-critical coordinates is discussed. For nonazeotropic fixed-composition fluid mixtures, pseudo-critical temperatures and pressures are found to be lower than the corresponding critical temperatures and pressures. The analysis shows that unstable pseudo-critical states cannot be detected using acoustic methods. The thermodynamic link between sound speeds and isochoric heat capacities is formulated and discussed in terms of p-Vm-T derivatives capable of being calculated using cubic equations of state. Based on the Griffiths-Wheeler theory of critical phenomena, a new specific link between critical sound speeds and critical isochoric heat capacities is deduced in terms of the rate of change of critical pressures and critical temperatures along the p-T projection of the critical locus of binary fluid mixtures. It is shown that the latter link can be used to obtain estimates of critical isochoric heat capacities from the experimental determination of critical speeds of sound. The applicability domain of the new link does not include binary systems at compositions along the critical line for which the rate of change in pressure with temperature changes sign. The new equation is combined with thermodynamic data to provide approximate numerical estimates for the speed of sound in two mixtures of carbon dioxide and ethane at different temperatures along their critical isochores. A clear decrease in the sound speed is found at critical points. A similar behavior is suggested by available critical heat capacity data for several binary fluid mixtures. Using an acoustic technique, the critical temperature and pressure were determined for three different mixtures of methane and propane, and compared with literature data obtained using conventional methods. It is concluded that acoustic-based techniques are reliable to determine, for the most part, critical surfaces of fluid mixtures. The remaining few cases where the present analysis cannot be applied could be tested by the thermodynamic calculation of critical sound speeds using crossover equations of state in conjunction with experimentally determined critical isochoric heat capacities.  相似文献   

14.
Grand canonical Monte Carlo and configurational-bias Monte Carlo techniques are carried out to simulate the adsorption of ternary and quaternary mixtures of short linear alkanes, involving methane, ethane, propane, and n-butane, in pillared layered materials at ambient temperature, T=300 K. In the simulation, a pillared layered pore is modeled by a uniform distribution of pillars between two layered walls built by making two separate talc lamellas parallel each other with a given size of interlayer distance. The interaction between fluid molecules and two layered walls is measured by storing potentials calculated in advance at a series of grid points. The interaction between fluid molecules and pillars is also calculated by a site-to-site method. The potential model proposed in this work is proved to be effective because of the simulation result being good agreement with the experimental data for the adsorption of nitrogen at 77 K. Then, the adsorption isotherms of mixtures of short linear alkanes in pillared layered pores with three different porosities psi=0.98, 0.93 and 0.85, and three pore widths H=1.02, 1.70 and 2.38 nm at 300 K are obtained by taking advantage of the model. The simulation results tell us that the longer chain component is preferentially adsorbed at low pressures, and its adsorption increases and then decreases as the pressure increases while the shorter chain component is still adsorbed at high pressures. Moreover, the sorption selectivity of pillared layered materials for the longest chain component in alkane mixtures increases as the mole fraction of methane in the gas phase increases. The selectivity of pillared layered materials for the longest chain component in alkane mixtures also increases as the pore width decreases and the porosity increases.  相似文献   

15.
16.
Endohedral adsorption properties of ethylene and ethane onto single-walled carbon nanotubes were investigated using a united atom (2CLJQ) and a fully atomistic (AA-OPLS) force fields, by Grand Canonical Monte Carlo and Molecular Dynamics techniques. Pure fluids were studied at room temperature, T=300 K, and in the pressure ranges 4×10−4<p<47.1 bar (C2H4) and 4×10−4<p<37.9 bar (C2H6). In the low pressure region, isotherms differ quantitatively depending on the intermolecular potential used, but show the same qualitative features. Both potentials predict that ethane is preferentially adsorbed at low pressures, and the opposite behavior was observed at high loadings. Isosteric heats of adsorption and estimates of low pressure Henry’s constants, confirmed that ethane adsorption is the thermodynamically favored process at low pressures. Binary mixtures of C2H4/C2H6 were studied under several (p,T) conditions and the corresponding selectivities towards ethane, S, were evaluated. Small values of S<4 were found in all cases studied. Nanotube geometry plays a minor role on the adsorption properties, which seem to be driven at lower pressures primarily by the larger affinity of the alkane towards the carbon surface and at higher pressures by molecular volume and packing effects. The fact that the selectivity towards ethane is similar to that found earlier on carbon slit pores and larger diameter nanotubes points to the fact that the peculiar 1-D geometry of the nanotubes provides no particular incentive for the adsorption of either species.  相似文献   

17.
Pure gas permeation and sorption experiments were carried out for the gases ethylene, ethane, propylene and propane using polyimides based on 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA). Composite membranes and free films were used. Experiments were performed at 308 K and feed pressures up to 17 atm for ethylene and ethane and 9 atm for propylene and propane. Mixed gas permeation experiments were carried out with 50 : 50 olefin/paraffin feed mixtures. For all investigated polyimides, the ideal ethylene/ethane separation factor ranged between 3.3 and 4.4 and the ideal propylene/propane separation factor ranged between 10 and 16 at a feed pressure of 3.8 atm and 308 K. In mixed gas permeation experiments, up to 20% lower selectivity was found for the ethylene/ethane separation and up to 50% reduced selectivity for the propylene/propane separation compared to the ideal selectivity. The influence of feed temperature on separation and permeation properties will be discussed based on pure gas permeability data at 298 and 308 K.  相似文献   

18.
By assessing a large number of binary systems, it is shown that molecular modeling is a reliable and robust route to vapor–liquid equilibria (VLE) of mixtures. A set of simple molecular models for 78 pure substances from prior work is taken to systematically describe all 267 binary mixtures of these components for which relevant experimental VLE data is available. The mixture models are based on the modified Lorentz–Berthelot combining rule. Per binary system, one state independent binary interaction parameter in the energy term is adjusted to a single experimental vapor pressure. The unlike energy parameter is altered usually by less than 5% from the Berthelot rule. The mixture models are validated regarding the vapor pressure at other state points and also regarding the dew point composition, which is a fully predictive property in this work. In almost all cases, the molecular models give excellent predictions of the mixture properties.  相似文献   

19.
The thermal decomposition of gaseous monomethylhydrazine (MMH) was studied by recording MMH absorption at 220 nm of the reacting gas behind a reflected shock wave at temperatures of 900–1370 K, pressures of 140–450 kPa, and in mixtures containing 97.5–99 mol% argon. Based on previous work (Sun and Law; J Phys Chem A 2007, 111(19), 3748–3760), a kinetic mechanism was developed over extended temperature and pressure ranges to model these experimental data. Specifically, the temperature and pressure dependence of the unimolecular rate coefficients on the dissociation of MMH and the associated radicals were calculated by the QRRK/Master equation analysis at temperatures of 300–2000 K and pressures of 1–100 atm based on published thermochemical and kinetic parameters. They were then fitted using the Troe formalism and incorporated in the kinetic model. This unadjusted model was then used to predict the MMH decomposition profiles at different temperatures and pressures for seven groups of MMH/Ar mixtures and the half‐life decomposition times from shock tube experiments. Good agreement was observed below 940 K and above 1150 K for the diluted MMH/Ar mixtures. The model predictions further show that the overall MMH decomposition rate follows first‐order kinetics, and that the N–N bond scission is the most sensitive reaction path for the modeling of the homogeneous decomposition of MMH at elevated pressures. However, the model predictions deviate from the experimental data with the incubation period of ca. 100 μs observed in the 1030–1090 K temperature range, and it also predicts longer ignition delays for highly concentrated MMH/Ar mixtures. The discrepancy between the model predictions and experimental data at these special conditions of MMH decomposition was analyzed. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 176–186, 2009  相似文献   

20.
NVT- and NpT-Gibbs ensemble Monte Carlo (GEMC) simulations were applied to describe the vapor–liquid equilibrium of water (between 323 and 573 K), carbon dioxide (between 230 and 290 K) and their binary mixtures (between 348 and 393 K). The properties of supercritical carbon dioxide were determined between 310 and 520 K by NpT-MC simulations. Literature data for the effective pair potentials (for water: the SPC-, SPC/E-, and TIP4P potential models; for carbon dioxide: the EPM2 potential model) were used to describe the properties of the pure substances. The vapor pressures of water and carbon dioxide are calculated. For water, the SPC- and TIP4P models give superior results for the vapor pressure when compared to the SPC/E model. The vapor–liquid equilibrium of the binary mixture, carbon dioxide–water, was predicted using the SPC- as well as the TIP4P model for water and the EPM2 model for carbon dioxide. The interactions between carbon dioxide and water were estimated from the pair potentials of the pure components using common mixing rules without any adjustable binary parameter. Agreement of the predicted data for the compositions of the coexisting phases in vapor–liquid equilibrium and experimental results is observed within the statistical uncertainties of the simulation results in the investigated range of state, i.e. at pressures up to about 20 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号