首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-tert-Butyldiphenylsilylmethyl-substituted aziridine and the corresponding azetidine reacted efficiently with nitriles and carbonyl substrates to generate imidazoline, oxazolidine, and tetrahydropyrimidine products. The azetidine rearranged efficiently to the pyrrolidine skeleton involving migration of silicon under BF3.Et2O conditions. The tert-butyldiphenylsilylmethyl function, latent to CH2OH group, controlled not only the regioselectivity of aziridine and azetidine cleavage but also the relative stereochemistry of the substituents in the products derived from substituted aziridine.  相似文献   

2.
The synthesis, spectroscopic and X-ray structural characterization of copper(II) and palladium(II) complexes with aziridine ligands as 2-dimethylaziridine HNCH(2)CMe(2) (a), the bidentate N-(2-aminoethyl)aziridines C(2)H(4)NC(2)H(4)NH(2) (b) or CH(2)CMe(2)NCH(2)CMe(2)NH(2) (c) as well as the unsaturated azirine NCH(2)CPh (d) are reported. Cleavage of the cyclometallated Pd(II) dimer [μ-Cl(C(6)H(4)CHMeNMe(2)-C,N)Pd](2) with ligand a yielded compound [Cl(NHCH(2)CMe(2))(C(6)H(4)CHMe(2)NMe(2)-C,N)Pd] (1a). The reaction of the aziridine complex trans-[Cl(2)Pd(HNC(2)H(4))(2)] with an excess of aziridine in the presence of AgOTf gave the ionic chelate complex trans-[(C(2)H(4)NC(2)H(4)NH(2)-N,N')(2)Pd](OTf)(2) (2b) which contains the new ligand b formed by an unexpected insertion and ring opening reaction of two aziridines ("aziridine dimerization"). CuCl(2) reacted in pure HNC(2)H(4) or HNCH(2)CMe(2) (b) again by "dimerization" to give the tris-chelated ionic complex [Cu(C(2)H(4)NC(2)H(4)NH(2)-N,N')(3)]Cl(2) (3b) or the bis-chelated complex [CuCl(C(2)H(2)Me(2)NC(2)H(2)Me(2)NH(2)-N,N')(2)]Cl (4c). By addition of 2H-3-phenylazirine (d) to PdCl(2), trans-[Cl(2)Pd(NCH(2)CPh)(2)] (5d) was formed. All new compounds were characterized by NMR, IR and mass spectra and also by X-ray structure analyses (except 3b). Additionally the cytotoxic effects of these complexes were examined on HL-60 and NALM-6 human leukemia cells and melanoma WM-115 cells. The antimicrobial activity was also determined. The growth of Gram-positive bacterial strains (S. aureus, S. epidermidis, E. faecalis) was inhibited by almost all tested complexes at the concentrations of 37.5-300.0 μg mL(-1). However, MIC values of complexes obtained for Gram-negative E. coli and P. aeruginosa, as well as for C. albicans yeast, mostly exceeded 300 μg mL(-1). The highest antibacterial activity was achieved by complexes 1a and 2b. Complex 2b also inhibited the growth of Gram-negative bacteria.  相似文献   

3.
[RuVI(N)(salchda)(CH3OH)]PF6 (1) (salchda = N,N'-bis(salicylidene)o-cyclohexyldiamine dianion) reacts readily with 2,3-dimethyl-2-butene at room temperature in the presence of pyridine or 1-methylimidazole to give initially [RuIV(Az1(-H))(salchda)(py)]PF6 (2, Az1 = 2,2,3,3-tetramethylaziridine), which is then slowly reduced to [RuIII(Az1)(salchda)(py)]PF6 (3). 1 also reacts with a variety of aryl-substituted alkenes such as styrene and trans-beta-methylstyrene in the presence of py or 1-MeIm to give the corresponding ruthenium(III) aziridine complexes. The structures of 3 and [RuIII(Az2)(salchda)(1-MeIm)]PF6 (4, Az2 = trans-2-methyl-3-phenylaziridine) have been determined by X-ray crystallography. The Ru-N(aziridine) distances (2.1049, 2.097 A) are consistent with a neutral aziridine ligand. The C-C and C-N distances in the aziridine ligands are all indicative of single bonds.  相似文献   

4.
[reaction: see text] The use of a pyridinophane, a macrocycle composed of three pyridines linked, via all ortho positions through CH(2) or CH(2)CH(2) groups, bound to copper, gives good performance (rate and yield) catalyzing the conversion of substituted aliphatic olefins and PhINTs to aziridines. Advantages also derive from using CH(2)Cl(2) solvent and the weakly coordinating anions BAr(4)(-) (Ar = C(6)H(5) or 3,5-C(6)H(3)(CF(3))(2)). Reactions are complete in minutes at 20 degrees C, and yields are almost quantitative for olefins not bearing secondary allylic CH bonds; however, cis-cyclooctene gives only the aziridine despite the allylic hydrogens.  相似文献   

5.
The geometries of the 2-aminoethyl cation and the isomeric protonated aziridine have been optimized using ab initio molecular orbital calculations employing the split-valence shell 4-31G basis set. The protonated aziridine is computed to be the more stable ion by 46.5 kcal/mole (4-31G level) and 44.9 kcal/mole (double-zeta basis set). The profile to interconversion is found to have a barrier of less than 15 kcal/mole (relative to the 2-aminoethyl cation) and this profile is compared with those computed for the similar ions XCH2CH 2 + where X=OH, F, SH and Cl.  相似文献   

6.
Madhushaw RJ  Hu CC  Liu RS 《Organic letters》2002,4(23):4151-4153
Treatment of alkynyltungsten complexes with tethered aziridines in the presence of BF(3).Et(2)O led to [3 + 2]-cycloaddition reactions, affording bicyclic tungsten-enamine species stereoselectively. The stereochemistry of the resulting product reveals that ring opening of aziridine is initiated by S(N)2 attack of the tungsten fragment. Decomplexation of these organometallics with I(2) in CH(2)Cl(2), followed by hydrolysis, afforded only cis-fused bicyclic lactams efficiently. [reaction: see text]  相似文献   

7.
The syntheses and reactivity of N-TBDPS and N-trityl protected derivatives of an aziridinomitosene corresponding to FK317 are described. New reactivity patterns were observed for these highly sensitive and functionally dense heterocycles under mild nucleophilic conditions approaching the threshold for degradation. Thus, the silyl or trityl protected aziridinomitosene reacted with Cs(2)CO(3)/CD(3)OD to give isomeric products where substitution occurred at C(10) and C(9a) (mitomycin numbering) providing a CD(3) ether and a CD(3) hemiaminal, respectively. These findings show that heterolysis at C(10) is faster than at aziridine C(1), in contrast to the behavior of typical aziridinomitosenes in the mitomycin series. The labile N-TBDPS hemiaminal and the more stable N-trityl hemiaminal resemble the mitomycin K substitution pattern. A reagent consisting of CsF in CF(3)CH(2)OH/CH(3)CN desilylated a simple N-TBDPS aziridine but caused nucleophilic cleavage at C(1) as well as C(10) without cleavage of the N-TBPDS group in the fully functionalized penultimate aziridinomitosene. The high reactivity of the C(10) carbamate with nucleophiles precludes the use of deprotection methodology that requires N-protonation for fully functionalized aziridinomitosenes in the FK317 series.  相似文献   

8.
The D-glucose derived aziridine carboxylate 5 was obtained from (E)-ethyl-6-bromo-1,2-O-isopropylidene-3-O-benzyl-5-deoxy-alpha-D-xylo-5-eno-heptofuranuronate 4 through conjugate addition of benzylamine and in situ intramolecular nucleophilic expulsion of bromine. The regioselective aziridine ring-opening, using water as a nucleophile, resulted in the alpha-hydroxy-beta-aminoester 6, which was exploited in the synthesis of six and five membered azasugars 1b/1c and 2b/2c, respectively. The glycosidase inhibitory activity of the title compounds was evaluated.  相似文献   

9.
In a previous study we reported that fluorine substitution at the carbon positions of aziridine results in profound enhancements of the rate of reaction with ammonia, a typical nucleophile, in the gas phase. In this study the investigation is extended to include chloro- and bromoaziridines. Because syntheses are largely performed in the condensed phase, the present computational investigation [(MP2(Full)/6-311++G(d,p)//MP2(Full)/6-31+G(d) level] was conducted with three typical solvents that cover a wide range of polarity: THF, CH3CN, and H2O. Nucleophiles can react with haloaziridines 1 by displacing a substituted amide ion by means of an SN2 mechanism (pathway a), producing 1,2-diaminohaloethanes (from the initially formed dipolar species 2). Alternatively, a rearrangement mechanism involving rate-determining departure of a halide ion (pathway b) to form an imidoyl halide, 3, is possible. Transition-state theory was used to compute relative reaction rates of these mechanistic possibilities and to assess the role of the halogen substituents and the reaction solvent. Gas-phase results provided the basis of mechanistic insights that were more apparent in the absence of intermolecular interactions. Fluoroaziridines were found to react at accelerated rates relative to aziridine exclusively by means of the a Menshutkin-type mechanism (SN2) in each solvent tested, while the reactions of the chloro- and bromoaziridines could be directed toward 2 in the highly nonpolar solvent, cyclohexane, or toward 3 in the more polar solvents. An assessment is made of the feasibility of using this chemistry of the haloazirdines in the synthetic laboratory.  相似文献   

10.
Several previous studies have shown that b(1) ions (formally acylium ions, H(2)NCHRCO(+)) derived from protonated aliphatic amino acids are unstable in the gas phase, fragmenting via decarbonylation to form a(1) ions (iminium ions, H(2)N = CHR(+)). Herein we examine the fragmentation reactions of ten potential b(1) ion precursors to determine whether stable aliphatic b(1) ions can be formed in the gas phase. Of all the systems studied, only the aziridine b(1) ion and the dehydroalanine b(1) ion were found to be stable. These experimental results are entirely consistent with ab initio calculations (at the MP2(full)/6-311G** level) which indicate that while the loss of CO from the b(1) ion of glycine is barrierless and exoethermic, the related losses from the b(1) ions of aziridine and dehydroalanine have significant barriers (29.5 and 16.2 kcal mol(-1), respectively) and are endothermic overall.  相似文献   

11.
To model the Ti-olefin interaction in the putative [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(R')(olefin)(+) intermediates in "constrained geometry" Ti-catalyzed olefin polymerization, chelated alkoxide olefin complexes [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))(+) have been investigated. The reaction of [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(2) (1a,b; R = H, Me) with HOCMe(2)CH(2)CH(2)CH=CH(2) yields mixtures of [eta(5)-C(5)R(4)SiMe(2)NH(t)Bu]TiMe(2)(OCMe(2)CH(2)CH(2)CH=CH(2)) (2a,b) and [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(OCMe(2)CH(2)CH(2)CH=CH(2)) (3a,b). The reaction of 2a/3a and 2b/3b mixtures with B(C(6)F(5))(3) yields the chelated olefin complexes [[eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][MeB(C(6)F(5))(3)] (4a,b; 71 and 89% NMR yield). The reaction of 2b/3b with [Ph(3)C][B(C(6)F(5))(4)] yields [[eta(5): eta(1)-C(5)Me(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][B(C(6)F(5))(4)] (5b, 88% NMR yield). NMR studies establish that 4a,b and 5b exist as mixtures of diastereomers (isomer ratios: 4a/4a', 62/38; 4b/4b', 75/25; 5b/5b', 75/25), which differ in the enantioface of the olefin that is coordinated. NMR data for these d(0) metal olefin complexes show that the olefin coordinates to Ti in an unsymmetrical fashion primarily through C(term) such that the C=C pi bond is polarized with positive charge buildup on C(int). Dynamic NMR studies show that 4b/4b' undergoes olefin face exchange by a dissociative mechanism which is accompanied by fast inversion of configuration at Ti ("O-shift") in the olefin-dissociated intermediate. The activation parameters for the conversion of 4b to 4b' (i.e., 4b/4b' face exchange) are: DeltaH = 17.2(8) kcal/mol; DeltaS = 8(1) eu. 4a/4a' also undergoes olefin face exchange but with a lower barrier (DeltaH = 12.2(9) kcal/mol; DeltaS = -2(3) eu), for the conversion of 4a to 4a'.  相似文献   

12.
Reduction of bis     
The reduction of symmetric, fully-substituted titanocene dichlorides bearing two pendant omega-alkenyl groups, [TiCl2(eta5-C5Me4R)2], R = CH(Me)CH= CH2 (1a). (CH2)2CH=CH2 (1b) and (CH2)3CH=CH2 (1c), by magnesium in tetrahydrofuran affords bis(cyclopentadienyl)titanacyclopentanes [Ti(IV)[eta1:eta1: eta5:eta5-C5Me4CH(Me)CH(Ti)CH2CH(CH2(Ti))CH(Me)C5Me4]] (2a), [Ti(IV)[eta1:eta1:eta5: eta5-C5Me4(CH2)2CH(Ti)(CH2)2CH(Ti)(CH2)2C5Me4]] (2b) and [Ti(IV)[eta1:eta1:eta5:eta5-C5Me4(CH2)2CH(Ti)CH(Me)CH(Me)CH(Ti)(CH2)2C5Me4]](2c), respectively, as the products of oxidative coupling of the double bonds across a titanocene intermediate. For the case of complex 1c, a product of a double bond isomerisation is obtained owing to a preferred formation of five-membered titanacycles. The reaction of the titanacyclopentanes with PbCl2 recovers starting materials 1a from 2a and 1b from 2b, but complex 2c affords, under the same conditions, an isomer of 1c with a shifted carbon - carbon double bond, [TiCl[eta5-C5Me4(CH2CH2CH=CHMe)]2] (1c'). The titanacycles 2a-c can be opened by HCl to give ansa-titanocene dichlorides ansa-[[eta5:eta5-C5Me4CH(Me)CH2CH2CH(Me)CH(Me)C5Me4]TiCl2] (3a), ansa-[[eta5:eta5-C5Me4(CH2)8C5Me4]TiCl2] (3b), along with a minor product ansa-[[eta5:eta5-C5Me4CH2CH=CH(CH2)5C5Me4]TiCl2] (3b'), and ansa-[[eta5:eta5-CsMe4(CH2)3CH(Me)CH(Me)CH=CHCH2C5Me4]TiCl2] (3c), respectively, with the bridging aliphatic chain consisting of five (3a) and eight (3b, 3b' and 3c) carbon atoms. The course of the acidolysis changes with the nature of the pendant group; while the cyclopentadienyl ring-linking carbon chains in 3a and 3b are fully saturated, compounds 3c and 3b' contain one asymetrically placed carbon-carbon double bond, which evidently arises from the beta-hydrogen elimination that follows the HCl addition.  相似文献   

13.
The reactons of some polyfluoroazaolefins with diazomethane are described. Thus 5-H-decafluoro-2-aza-hex-2-(Z)-ene yields 1-trifluoro-methyl-2-fluoro-2-(1,1,2,3,3,3-hexafluoropropyl)-aziridine as the sole isolable product. However, undecafluoro-2-azahex-2(Z)-ene yields not only the corresponding aziridine, 1-trifluoromethyl-2-fluoro-2-(heptafluoropropyl) aziridine, but also 1-trifluoromethyl-5-(heptafluoropropyl)-1,2,3-triazole, and 1-trifluoromethyl-2-fluoromethyl-2-(heptafluoropropyl) aziridine. 5-H-octafluoro-2-azahexa-2(Z)4(Z)-diene yielded the expected aziridine and 1-trifluoromethyl-2-fluoromethyl-2-(1,1,3,3,-tetra-fluoroprop-2-enyl)aziridine. No products were observed as a result of reactions at the C = C bond and no triazole was isolated in this case. Nonafluoroazacyclohex-1-ene gave the corresponding aziridine and a small amount of a compound believed to be 2,2,3,3,4,4,5,5-octafluoro-1,8,9-triazabicyclo [4,3,0] nonadiene i.e. the triazole product.  相似文献   

14.
Aziridines can undergo a range of ring-opening reactions with nucleophiles. The regio- and stereochemistry of the products depend on the substituents on the aziridine. Aziridine ring-opening reactions have rarely been used in radiosynthesis. Herein we report the ring opening of activated aziridine-2-carboxylates with [18F]fluoride. The aziridine was activated for nucleophilic attack by substitution of various groups on the aziridine nitrogen atom. Fluorine-18 radiolabelling was followed by ester hydrolysis and removal of the activation group. Totally regioselective ring opening and subsequent deprotection was achieved with tert-butyloxycarbonyl- and carboxybenzyl-activated aziridines to give α-[18F]fluoro-β-alanine in good radiochemical yield.  相似文献   

15.
The combination of CH3C(O)Co(CO)3P(o-tolyl)3/m-methoxypyridine serves as a versatile catalyst for both the carbonylative polymerizations of epoxides and N-alkylaziridines under closely resembling mechanistic hypotheses. Diblock poly(beta-alanoid-b-beta-hydroxypropionate)s can be synthesized even when the aziridine and epoxide comonomers are added all together at the beginning of the reaction.  相似文献   

16.
The reaction of tetrakis(chloromethyl)silane, Si(CH2Cl)4, with sodium azide afforded tetrakis(azidomethyl)silane (sila-pentaerythrityl tetraazide, Si(CH2N3)4 (1b)). Nitration of tetrakis(hydroxymethyl)silane, Si(CH2OH)4, with nitric acid resulted in the formation of tetrakis(nitratomethyl)silane (sila-pentaerythritol tetranitrate, Si(CH2ONO2)4 (2b)). Compounds 1b and 2b are extremely shock-sensitive materials and very difficult to handle. Spectroscopic data were obtained as good as sensitivity and safety allowed for umambiguous identification. Quantum chemical calculations (DFT) of the C/Si pairs C(CH2OH)4/Si(CH2OH)4, 1a/1b, and 2a/2b regarding the structures and electronic populations were performed.  相似文献   

17.
The reaction of 1-(triethylsilyl)aziridine with alkanethiols proceeds with splitting out of aziridine and the formation of (alkylthio)triethylsilanes. The reaction of 1-(triethylsilyl)aziridine with 2-mercaptoethanol leads to 2-(triethylsilyloxy)ethanethiol; the same reaction in a closed system leads to [2-(2-aminoethylthiol)ethoxy]triethylsilane. 1-[2-(Trialkylsilyl)ethyl]aziridines react with 2-mercaptoethanol and with mercapto carboyxlic acids with opening of the aziridine ring.See [1] for Communication 14.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 891–893, July, 1988.  相似文献   

18.
Alkylation of (ArNHCH2CH2){(2-C5H4N)CH2}NH with RX [RX = MeI, 4-CH2=CH(C6H4)CH2Cl) and (2-C5H5N)CH2Cl] in the presence of base has allowed access to the sterically demanding multidentate nitrogen donor ligands, {(2,4,6-Me3C6H2)NHCH2CH2}{(2-C5H4N)CH2}NMe (L1), {(2,6-Me3C6H3)NHCH2CH2}{(2-C5H4N)CH2}NCH2(C6H4)-4-CH=CH2 (L2) and (ArNHCH2CH2){(2-C5H4N)CH2}2N (Ar = 2,4-Me2C6H3 L3a, 2,6-Me2C6H3 L3b) in moderate yield. L3 can also be prepared in higher yield by the reaction of (NH2CH2CH2){(2-C5H4N)CH2}2N with the corresponding aryl bromide in the presence of base and a palladium(0) catalyst. Treatment of L1 or L2 with MCl2 [MCl2 = CoCl2.6H2O or FeCl2(THF)1.5] in THF affords the high spin complexes [(L1)MCl2](M = Co 1a, Fe 1b) and [(L2)MCl2](M = Co 2a, Fe 2b) in good yield, respectively; the molecular structure of reveals a five-coordinate metal centre with bound in a facial fashion. The six-coordinate complexes, [(L3a)MCl2](M = Co 3a, Fe 3b, Mn 3c) are accessible on treatment of tripodal L3a with MCl2. In contrast, the reaction with the more sterically encumbered leads to the pseudo-five-coordinate species [(L3b)MCl2](M = Co 4a, Fe 4b) and, in the case of manganese, dimeric [(L3b)MnCl(mu-Cl)]2 (4c); in 4a and 4b the aryl-substituted amine arm forms a partial interaction with the metal centre while in 4c the arm is pendant. The single crystal X-ray structures of , 1a, 3b.MeCN, 3c.MeCN, 4b.MeCN and 4c are described as are the solution state properties of 3b and 4b.  相似文献   

19.
Aryllithium compounds [LiC6H4(CH2N(Et)CH2CH2NEt2)-2]2 (2b), [LiC6H4(CH(Me)N(Me)CH2CH2NMe2-(R))-2]2 ((R)-3b), and [LiC6H4(CH(Me)N(Me)CH2CH2NMe2-(rac))-2]2 ((rac)-3b) were synthesized and characterized in the solid state and in solution. X-ray crystallographic studies of 2b and (R)-3b and molecular weight determinations of 2b, (R)-3b, and (rac)-3b by cryoscopy in benzene showed that, both in the solid state and in apolar, noncoordinating solvents such as benzene, these compounds exist as discrete dimeric aggregates. For (R)-3b and (rac)-3b the aggregation process of two monomeric aryllithium units to one dimer is highly diastereoselective.  相似文献   

20.
The radical-molecule reaction mechanism of CH3 with NOx (x = 1, 2) has been explored theoretically at the B3LYP/6-311Gd,p and MC-QCISD (single-point) levels of theory. For the singlet potential energy surface (PES) of the CH3 + NO2 reaction, it is found that the carbon to middle nitrogen attack between CH3 and NO2 can form energy-rich adduct a (H3CNO2) with no barrier followed by isomerization to b1 (CH3ONO-trans), which can easily convert to b2 (CH3ONO-cis). Subsequently, starting from b (b1, b2), the most feasible pathway is the direct N-O bond cleavage of b (b1, b2) leading to P1 (CH3O + NO) or the 1,3-H-shift and N-O bond rupture of b1 to form P2 (CH2O + HNO), both of which may have comparable contribution to the reaction CH3 + NO2. Much less competitively, b2 can take a concerted H-shift and N-O bond cleavage to form product P3 (CH2O + HON). Because the intermediates and transition states involved in the above three channels are all lower than the reactants in energy, the CH3 + NO2 reaction is expected to be rapid, as is consistent with the experimental measurement in quality. For the singlet PES of the CH3 + NO reaction, the major product is found to be P1 (HCN + H2O), whereas the minor products are P2 (HNCO + H2) and P3 (HNC +H2O). The CH3 + NO reaction is predicted to be only of significance at high temperatures because the transition states involved in the most feasible pathways lie almost above the reactants. Compared with the singlet pathways, the triplet pathways may have less contributions to both reactions. The present study may be helpful for further experimental investigation of the title reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号