首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The syntheses of a new cyclen-based ligand L(2) containing four N-[2-(2-hydroxyethoxy)ethyl]acetamide pendant arms and of its lanthanide(III) complexes [LnL(2)(H(2)O)]Cl(3) (Ln = La, Eu, Tb, Yb, or Lu) are reported, together with a comparison with some Ln(III) complexes of a previously reported analogue L(1) in which two opposite amide arms have been replaced by coordinating pyridyl units. The structure and dynamics of the La(III), Lu(III), and Yb(III) complexes in solution were studied by using multinuclear NMR investigations and density functional theory calculations. Luminescence lifetime measurements in H(2)O and D(2)O solutions of the [Ln(L(2))(H(2)O)](3+) complexes (Ln = Eu or Tb) were used to investigate the number of H(2)O molecules coordinated to the metal ion, pointing to the presence of an inner-sphere H(2)O molecule in a buffered aqueous solution. Fluoride binding to the latter complexes was investigated using a combination of absorption spectroscopy and steady-state and time-resolved luminescence spectroscopy, pointing to a surprisingly weak interaction in the case of L(2) (log K = 1.4 ± 0.1). In contrast to the results in solution, the X-ray crystal structure of the lanthanide complex showed the ninth coordination position occupied by a chloride anion. In the case of L(1), the X-ray structure of the [(EuL(1))(2)F] complex features a bridging fluoride donor with an uncommon linear Eu-F-Eu entity connecting two almost identical [Eu(L(1))](3+) units. Encapsulation of the F(-) anion within the two complexes is assisted by π-π stacking between the pyridyl rings of two complexes and C-H···F hydrogen-bonding interactions involving the anion and the pyridyl units.  相似文献   

2.
The synthesis of ligand H3 based on a disymmetrically substituted terpyridine core functionalised by a carboxylic acid in the 6-position and a bis(carboxymethyl)aminomethyl function in the 6'-position is described. The coordination behaviour of this heptadentate (4N/3O) ligand with lanthanide cations (Ln=Eu, Gd and Tb) was studied in solution showing the formation of complexes with [Ln] stoichiometry. Complexes with general formula [Ln(H2O)2] were isolated from neutral water solutions containing equimolar amounts of cations and ligands, and the complexes were characterized in the solid state (elemental analysis, IR) and in solution (mass spectrometry). The photo-physical properties of the luminescent complexes of Eu and Tb were studied in water solution by means of absorption, steady state and time-resolved emission spectroscopies. Evolution of the luminescence lifetimes of the Eu and Tb complexes in H2O and D2O reveals the presence of two water molecules coordinated in the first coordination sphere of the cations. Despite this important hydration number, the overall luminescence quantum yields of the complexes remained elevated, especially in the case of Tb (Phi=22.0 and 6.5% respectively for Tb and Eu). Upon crystallisation the Gd complex formed dimeric species in which two gadolinium atoms are each heptacoordinated by one ligand, the coordination sphere being completed by a single water molecule and a bridging carboxylate function, pointing to different behaviours in the solid and liquid states.  相似文献   

3.
The coordination compounds of the trivalent lanthanide ions (Ln(III)) have unique photophysical properties. Ln(III) excitation is usually performed through a light-harvesting antenna. To enable Ln(III)-based emitters to reach their full potential, an understanding of how complex structure affects sensitization and quenching processes is necessary. Here, the role of the linker between the antenna and the metal binding fragment was studied. Four macrocyclic ligands carrying coumarin 2 or 4-methoxymethylcarbostyril sensitizing antennae linked to an octadentate macrocyclic ligand binding site were synthesized. Complexation with Ln(III) (Ln = La, Sm, Eu, Gd, Tb, Yb and Lu) yielded species with overall −1, 0, or +2 and +3-charge. Paramagnetic 1H NMR spectroscopy indicated subtle differences between the coumarin- and carbostyril-carrying Eu(III) and Yb(III) complexes. Cyclic voltammetry showed that the effect of the linker on the Eu(III)/Eu(II) apparent reduction potential was dependent on the electronic properties of the N-substituent. The Eu(III), Tb(III) and Sm(III) complexes were all luminescent. Coumarin-sensitized complexes were poorly emissive; photoinduced electron transfer was not a major quenching pathway in these species. These results show that seemingly similar emitters can undergo very different photophysical processes, and highlight the crucial role the linker can play.  相似文献   

4.
The synthesis and characterization of a series of neo-pentoxide (OCH2C(CH3)3 or ONep) derivatives of group 3 and the lanthanide (Ln) series' metals were undertaken via an amide/alcohol exchange route. Surprisingly, the products isolated and characterized by single-crystal X-ray diffraction yielded isostructural species for every trivalent cation studied: [Ln(mu-ONep)2(ONep)]4 [Ln=Sc (1), Y (2), La (3), Ce (4), Pr (5), Nd (6), Sm (7), Eu (8), Gd (9), Tb (10), Dy (11), Ho (12), Er (13), Tm (14), Yb (15), Lu (16)]. Compounds 3, 4, 6, and 11 have been previously reported. Within this series of complexes, the Ln metal centers are oriented in a square with each Ln-Ln edge interconnected via two mu-ONep ligands; each metal center also binds one terminal ONep ligand. NMR data of 1-3 indicate that the solid-state structure is retained in solution. FTIR spectroscopy (KBr pellet) revealed the presence of significant Ln---H-C interactions within one set of the bridging ONep ligands in all cases; the stretching frequencies of these C-H bonds appear to increase in magnitude with decrease in metal ion radius. These complexes were used to generate nanoparticles through solution hydrolysis routes, resulting in the formation of lanthanide oxide nanoparticles and rods. The emission properties of these ceramics were preliminarily investigated using UV-vis and PL measurements.  相似文献   

5.
The synthesis of a new ligand LH(4) based on a glutamic acid skeleton bis-functionalized on its nitrogen atom by 6-methylene-6'-carboxy-2,2'-bipyridine chromophoric units is described. UV-vis spectrophotometric titrations revealed the formation of 1:1 M:L complexes with lanthanide(III) cations, and complexation of LH(4) with equimolar amounts of hydrated LnCl(3) salts (Ln = Eu, Gd, and Tb) gave water-soluble and stable complexes of the general formula [LnL(H(2)O)]Na, which were characterized by elemental analysis, IR, UV-vis absorption spectroscopy, (1)H NMR (Ln = Eu), and mass spectrometry. The conditional stability constant for formation of the [EuL(H(2)O)]Na complex was determined by competitive complexation experiments to be log K = 16.5 +/- 0.6 in 0.01 M TRIS/HCl buffer (pH = 7.0). In water solution, the [EuL(H(2)O)]Na and [TbL(H(2)O)]Na complexes were highly luminescent with quantum yields of 8% and 31%, respectively, despite the presence of ca. one water molecule in the first coordination sphere of the metal ions. Activation of the appended carboxylate function of the glutamate moiety in the form of an N-hydroxysuccinimidyl ester allows for the covalent linking of the complexes to primary amino groups of biological compounds. Bovine serum albumin (BSA) was labeled with both Eu or Tb complexes, and the Ln-BSA conjugates were characterized by UV-vis absorption and emission spectroscopy and MALDI-TOF mass spectrometry. Labeling ratios (number of complex molecules per BSA) of ca. 8:1 and 7:1 were established for Eu-BSA and Tb-BSA, respectively. The suitability of the tagged compound for use in bioanalytical time-resolved luminescence microscopy was established by comparison with fluorescein-labeled probes.  相似文献   

6.
Jia G  Law GL  Wong KL  Tanner PA  Wong WT 《Inorganic chemistry》2008,47(20):9431-9438
Six lanthanide coordination compounds with two isomeric carboxylic acids, nicotinic acid (HL(1)) and isonicotinic acid (HL(2)), [(L(1))3Ln(H2O)2]2 (Ln = Eu, 1; Gd, 2; Tb, 3) and [( L(2))2Ln(H2O)4][NO3] (Ln = Eu, 4; Gd, 5; Tb, 6), have been synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1-3 are dimeric whereas 4-6 are polymeric, all with 8-coordination of Ln(3+). The distinction between these lanthanide complexes is readily accomplished from the 10 K high resolution electronic emission spectra. Spectral interpretation is given for the Eu(3+) complexes 1, 4, whereas the spectra of 3 and 6 are more complex. The relationships between spectroscopic and crystallographic site symmetries are discussed. The calculated second rank crystal field strengths of Eu(3+) in 1 and 4 are intermediate in magnitude.  相似文献   

7.
(Z)-4-(4-Methoxyphenoxy)-4-oxobut-2-enoic acid and its solid rare earth complexes LnL3.2H2O (Ln=La, Eu, Tb) were synthesized and characterized by means of MS, elemental analysis, FTIR, 13C NMR and TG-DTA. The IR and 13C NMR results show that the carboxylic groups in the complexes coordinated to the rare earth ions in the form of a bidentate ligand, but the ester carboxylic groups have not taken part in the coordination. The luminescence spectra of Eu(III) and Tb(III) complexes in solid state were also studied. The strong luminescence emitting peaks at 616nm for Eu(III) and 547nm for Tb(III) can be observed, which could be attributed to the ligand has an enhanced effect to the luminescence intensity of the Eu and Tb.  相似文献   

8.
Complex formation in a Ln(III)-1,10-phenanthroline-ethyl acetate system, where Ln = La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, or Lu, is studied by spectrophotometric methods. The stability of the complexes is estimated. The changes in the thermodynamic parameters of complex formation and the bonding character in the lanthanide complexes with 1,10-phenanthroline and 2,2′-dipyridyl are ascertained and compared.  相似文献   

9.
Grimes TS  Tian G  Rao L  Nash KL 《Inorganic chemistry》2012,51(11):6299-6307
Time-resolved fluorescence spectroscopy and Fourier transform IR spectroscopy have been applied to characterize the coordination environment of lipophilic complexes of Eu(3+) with bis(2-ethylhexyl)phosphoric acid (HDEHP) and (2-ethylhexyl)phosphonic acid mono(2-ethylhexyl) ester (HEH[EHP]) in 1,4-diisopropylbenzene (DIPB). The primary focus is on understanding the role of lactate (HL) in lanthanide partitioning into DIPB solutions of HDEHP or HEH[EHP] as it is employed in the TALSPEAK solvent extraction process for lanthanide separations from trivalent actinides. The broader purpose of this study is to characterize the changes that can occur in the coordination environment of lanthanide ions as metal-ion concentrations increase in nonpolar media. The optical spectroscopy studies reported here complement an earlier investigation of similar solutions using NMR spectroscopy and electrospray ionization mass spectrometry. Emission spectra of Eu(3+) complexes with HDEHP/HEH[EHP] demonstrate that, as long as the Eu(3+) concentration is maintained well below saturation of the organic extractant solution, the Eu(3+) coordination environment remains constant as both [HL](org) and [H(2)O](org) are increased. If the total organic-phase lanthanide concentration is increased (by extraction of moderate amounts of La(3+)), the (5)D(0) → (7)F(1) transition singlet splits into a doublet with a notable increase in the intensity of both (5)D(0) → (7)F(1) and (5)D(0) → (7)F(2) electronic transitions. The increased multiplicity in the emission spectra indicates that Eu(3+) ions are present in multiple coordination environments. The increased emission intensity of the 614 nm band implies an overall reduction in symmetry of the extracted Eu(3+) complex in the presence of macroscopic La(3+). Although [H(2)O](org) increases to above 1 M at high [HL](tot), this water is not associated with the Eu(3+) metal center. IR spectroscopy results confirm a direct Ln(3+)-lactate interaction at high concentrations of lanthanide and lactate in the extractant phase. At low organic-phase lanthanide concentrations, the predominant complex is almost certainly the well-known Ln(DEHP·HDEHP)(3). As lanthanide concentrations in the organic phase increase, mixed-ligand complexes with the general stoichiometry Ln(L)(n)(DEHP)(3-n) or Ln(L)(n)(DEHP·HDEHP)(3-n) become the dominant species.  相似文献   

10.
稀土金属有机配合物的红外和拉曼光谱研究   总被引:1,自引:0,他引:1  
利用新合成的配体N,N,N′,N′-四正丁基己二酰胺Bu2NCO(CH2)4OCNBu2(TBAA)(Bu=正丁基)与一系列稀土金属硝酸盐反应,得到了一系列配合物Ln2(TBAA)3(NO3)6(Ln=La,Nd,Sm,Eu,Gd,Tb,Dy,Tm,Lu)。研究表明,该系列配合物具有相似的红外和拉曼光谱特性,有机配体以羰基中的氧通过双龄和桥连方式与Ln^3 配位,每个Ln^3 的配位数为9。  相似文献   

11.
Reaction of lanthanide nitrates with (t)Bu(3)PO (=L) lead to the isolation of complexes Ln(NO(3))(3)L(2)·H(2)O·nEtOH (Ln = La (1), Nd(2)), Ln(NO(3))(3)L(2)?·nEtOH (Sm(3), Eu(4)), and Ln(NO(3))(3)L(2) (Dy(5), Er(6), Lu(7)). These have been characterized by elemental analysis, infrared and NMR((1)H, (13)C and (31)P) spectroscopy and single-crystal X-ray diffraction. The structures show L to be positioned on opposite sides of the metal with the nitrates forming an equatorial band. When Ln = Dy, Er, and Lu two distinct molecules are present in the unit cell. A major isomer (70%) has a (P)O-Ln-O(P) angle of less than 180° with one of the nitrate ligands twisted out of the plane of the other nitrates while the lower abundance isomer is more symmetric with the (P)O-Ln-O(P) angle of 180° and the nitrate ligands coplanar giving a hexagonal bipyramidal geometry. These isomers cannot be observed by variable temperature solution (31)P NMR measurements but are clearly seen in the solid-state NMR spectrum of the Lu complex. Variable temperature solid-state NMR indicates that the isomers do not interconvert at temperatures up to 100 °C. Attempts to prepare cationic species [Ln(NO(3))(2)L(3)](+)[PF(6)](-) have not been totally successful and led to the isolation of crystals of Lu(NO(3))(3)L(2) and Tb(NO(3))(3)L(2).CH(3)CN (8).  相似文献   

12.
In this paper, a series of 12 binary luminescent lanthanide coordination compounds with long chain p-carboxyphenol ester were assembled. Both elemental analysis and infrared spectroscopy allowed to determine the complexes formula: LnL3, where Ln=Tb, Dy, Eu; L=p-dodecanoyloxybenzoate (12-OBA), p-myristoyloxybenzoate (14-OBA), p-palmitoyloxybenzoate (16-OBA) and p-stearoyloxybenzoate (18-OBA), respectively. The photophysical properties of these complexes were studied in detail with various of spectroscopies such as ultraviolet-visible absorption spectra, low temperature phosphorescence spectra and fluorescent spectra. The ultraviolet-visible absorption spectra showed that some bands shift with the different chain length of p-carboxyphenol ester. From the low temperature phosphorescent emission, the triplet state energies for these four ligands were determined to be around 24,242 cm-1 (12-OBA), 24,612 cm-1 (14-OBA), 24,084 cm-1 (16-OBA) and 24,125 cm-1 (18-OBA), respectively, suggesting they are suitable for the sensitization of the above lanthanide ions, especially for Tb3+ and Dy3+. The fluorescence excitation and emission spectra for these lanthanide complexes of the four ligands take agreement with the above predict from energy match.  相似文献   

13.
Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2?:?3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.  相似文献   

14.
Herein, we discuss how, why, and when cascade complexation reactions produce stable, mononuclear, luminescent ternary complexes, by considering the binding of hexafluoroacetylacetonate anions (hfac(-)) and neutral, semi-rigid, tridentate 2,6-bis(benzimidazol-2-yl)pyridine ligands (Lk) to trivalent lanthanide atoms (Ln(III)). The solid-state structures of [Ln(Lk)(hfac)(3)] (Ln=La, Eu, Lu) showed that [Ln(hfac)(3)] behaved as a neutral six-coordinate lanthanide carrier with remarkable properties: 1) the strong cohesion between the trivalent cation and the didentate hfac anions prevented salt dissociation; 2) the electron-withdrawing trifluoromethyl substituents limited charge-neutralization and favored cascade complexation with Lk; 3) nine-coordination was preserved for [Ln(Lk)(hfac)(3)] for the complete lanthanide series, whilst a counterintuitive trend showed that the complexes formed with the smaller lanthanide elements were destabilized. Thermodynamic and NMR spectroscopic studies in solution confirmed that these characteristics were retained for solvated molecules, but the operation of concerted anion/ligand transfers with the larger cations induced subtle structural variations. Combined with the strong red photoluminescence of [Eu(Lk)(hfac)(3)], the ternary system Ln(III)/hfac(-)/Lk is a promising candidate for the planned metal-loading of preformed multi-tridentate polymers.  相似文献   

15.
Solid complexes of lanthanide nitrate with 1,4-di(N,N-di-n-butyl-acetamido)-quinoxaline-2,3-dione (L), [Ln(N03)3L.H2O] (Ln=La, Nd, Eu, Gd, Tb, Er), have been prepared and characterized by elemental analysis, IR, UV-vis spectra and conductivity measurements. The fluorescence property of the europium complex in solid state and in MeCN, acetone, AcOEt and THF was studied. Under the excitation, the europium complex exhibited characteristic emissions of europium. The result indicates that the triplet state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion.  相似文献   

16.
Metathesis of lanthanide tris di-tert-butyl beta-diketonates ([Ln(thd)3] Ln=Pr, Nd, Eu, Tb) with one or two equivalents of group 1 salts of the sulfur bridged binaphtholate dianion [1,1'-S(2-OC10H4But(2)-3,6)2]2-, [M2L], M=K, Li affords luminescent mono- and bis-ligand substituted complexes ML[LnL(thd)2].L; M=K, Ln=Pr , Nd , Eu and Tb (L=thf, diethyl ether or toluene) and M(thf)2[LnL2(thd)]; M=Li, Ln=Pr , Nd , Eu , Tb . The potassium salt [K2L] affords mono-L substituted complexes most cleanly, while the lithium salt [Li2L] yields the bis-L substituted complexes most cleanly. The L ligands function as antenna for the sensitised lanthanide-centred emission in Eu3+ and Tb3+ complexes. The X-ray single-crystal structures of mono- and bis-L lanthanide complexes of Nd3+ are presented.  相似文献   

17.
The characteristics of styrene-acrylic acid copolymer supported lanthanide complexes (SAAC Ln) (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tin, Yb, and Lu) were described. A comparison of the activities of SAAC·Ln was made. It was found that in the polymerization of butadiene, a peak in activity appeared at Nd and Pr, Sin, Eu and the heavy lanthanides exhibited low or no activities. The effects of some factors on the activities were discussed. The microstructure of the polymers obtained with all the lanthanides in the series were the same and the content of cis-1, 4 polybutadiene attained was more than 98%.  相似文献   

18.
New polydentate ligands (e.g., Tsox and TsoxMe) have been synthesized to take advantage of the chelating effect of bidentate 8-hydroxyquinolinate subunits connected to a N,N,N',N'-tetraaminopropyl-1,2-ethylenediamine framework and with the aim of sensitizing the NIR luminescence of Nd(III) and Yb(III) ions. Ten pK(a)'s have been determined and the interaction between the ligands and Ln(III) ions in dilute aqueous solution has been probed both by potentiometric and spectrophotometric titrations. These studies have been mostly performed with the Eu(III) ion, which is in the middle of the lanthanide series, and extended to other ions (La(III), Er(III), Lu(IIII)). Stable complexes with Ln(III) ions are formed (pLn in the range of 14-16), the four chromophoric units being coordinated to the metal center, exploiting the entropic effect generated by the anchor. The monometallic complexes [Ln(H(2)L)](3)(-) exist as the major species at physiological pH regardless of the lanthanide used. Lifetime determinations of the Nd((4)F(3/2)) and Yb((2)F(5/2)) excited levels in both H(2)O and D(2)O at buffered pH point to the absence of water molecules bound in the inner coordination sphere of the Ln(III). Photophysical properties of the free ligands and of their lanthanide complexes have been investigated in buffered aqueous solutions both at room temperature and 77 K. The low-energy triplet state makes energy transfers from the ligand to the metal ions possible; this leads to a sizable sensitization of the Nd(III)- or Yb(III)-centered luminescence ( = 0.02% and = 0.18%) for Tsox chelates. Methylation of the amide functions removes the quenching mechanism induced by the proximate N-H vibrations and increases both the lifetimes and quantum yields of the TsoxMe chelates ( = 0.04% and = 0.37%). In fact, TsoxMe yields one of the most luminescent Yb(III) compounds known in water, and this ligand appears to be suitable for the development of NIR probes for bioanalyses.  相似文献   

19.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

20.
The polymeric lanthanide complexes (Ln(mu-CH3OC6H5C4O3)(CH3OC6H5C4O3)2 (H2O)4.xH2O)n [Ln=La (1), Eu (2), Gd (3)], formed from the reaction of aqueous solutions of anisolesquarate and Ln(NO3)3.xH2O, are all structurally similar with only subtle differences between the lanthanum complex and the isomorphous pair of europium and gadolinium analogues. The lanthanum atom in 1 has a square antiprismatic coordination geometry comprising two pendant and two mu-1,3-bridging anisolesquarate groups and four aqua ligands. Complexes 2 and 3 have two independent metal atoms in their asymmetric units compared to one for the lanthanum complex. However, the gross structures of 1-3 are essentially the same. The asymmetric unit of the terbium complex ((CH3OC6H5C4O3)3Tb(H2O)4(mu-CH3OC6H5C4O3)(CH3OC6H5C4O3)2Tb(H2O)5).H2O (4) contains two independent binuclear units which hydrogen bond to form an extended structure very similar to those of 1-3. The ionic polymers ([Ln(mu2-C4O4)(H2O)6][C6H5NHC4O3].4H2O)n [Ln=Eu (5), Gd (6), Tb (7)] result from the incomplete hydrolysis of the anilinosquarate ion during the attempted synthesis of Eu(III), Gd(III), and Tb(III) anilinosquarate complexes. However, complete hydrolysis of the substituent is accomplished by La(III) ions, and the neutral polymer (La2(mu2-C4O4)2(mu3-C4O4)(H2O)11.2H2O)n (8) is formed. In complexes 5-7, the central lanthanide atom has a square antiprismatic geometry, being bonded to two mu-1,2-bridging squarate and six aqua ligands. Two anilinosquarate counteranions participate in second-sphere coordination via direct hydrogen bonding to aqua ligands on each metal center. These counteranions, and the included waters of crystallization, serve to link neighboring cationic polymer chains via an extensive array of O-H...O hydrogen bonds to form a 3-dimensional network. The polymeric lanthanum complex 8 contains two different metal environments, each having distorted monocapped square antiprismatic geometry. For one lanthanum atom the coordination polyhedron comprises five aqua and four squarate ligands, while for the other the polyhedron consists of six aqua and three squarate ligands; in each case one of the aqua ligands occupies the capping position. The squarate ligand exhibits two coordination modes in 8 (mu-1,2- and mu-1,3-bridging), and neighboring polymer chains are cross-linked by hydrogen bonds to form a 3-dimensional network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号