首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To elucidate the compatibility of polymer and plasticizer components of binders a study of polymer–plasticizer interactions by differential scanning calorimetry (DSC) and swelling tests was conducted. The glass transition temperatures (Tg's) of mixtures of polymers and plasticizers, both cured and uncured, were determined with a DSC technique. Results with the PEG polymer systems were complicated by the partial crystallization of the polymer from the polymer/plasticizer mixtures. The PGA polymer system did not exhibit this behavior. However, the Tg's of cured PGA with various plasticizer mixtures made complicated departures from linearity (plots of Tg versus weight fraction of plasticizer) that indicated polymer–plasticizer interaction. By using least-squares analysis of data plotted by the equation Values of the interaction parameter K were determined for cured PGA in various plasticizer systems. These K values are in good agreement with the molecular flexibility of the plasticizers based on their molecular structure. The results of swelling tests are discussed to elucidate further the nature of the interaction of these polymers with plasticizers. Calculated polymer-plasticizer interaction values (χ) from the swelling tests correlated with the solubility parameter (δ) for a given class of polymer (polyether, polyester) and plasticizer (nitrate ester, ether-type). The efficiency of a plasticizer in reducing the Tg of a polymer (below the linearly interpolated value) was found not to be related to the swelling behavior of the polymer in the plasticizer.  相似文献   

2.
Sodium triflate/polyether urethane polymer electrolytes ranging in concentration from 0.05 molal to 1.75 molal have been investigated via 23Na static solid-state NMR. Room temperature spectra and spin lattice relaxation times were consistent with a single narrow resonance indicating the presence of only mobile ionic species. The concentration and temperature dependence of relaxation times, chemical shifts, and linewidth have been investigated. The results suggest either a single species or rapid exchange between a number of species (even at temperatures below the glass transition temperature, Tg). The linewidth decreases with increasing concentration of ions and remains temperature independent below Tg. Below Tg a maximum quadrupolar interaction constant of 2 MHz is calculated. The addition of plasticizer to the polymer electrolyte causes significant chemical shift changes that depend on the solvent donicity of the plasticizer. The linewidth and T1 relaxation times also depend on the Tg of the plasticized systems. Previous 23Na NMR literature results are reviewed and qualitative models developed to account for the variation in results. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The entropy theory of glasses is used to determine the glass temperature depression by a multicomponent low molecular weight plasticizer (diluent). The glass temperature, Tg, is calculated as a function of pressure, P, the mole fractions, mi, of the plasticizers, and the degree of polymerization p. One finds, provided there is no phase separation, that to a good approximation, the initial glass temperature depression is a function of the total mole fraction of plasticizer. Moreover, the glass temperature depression for small plasticizer molecules is found to be nearly a universal function of the plasticizer mole fraction (it depends on no other plasticizer variable), and to vary inversely as the number of flexible bonds per monomer unit of the polymer. A useful approximation is found, γdTg/dm1 = −3Tg, where m1 is the total mole fraction of diluent on a per monomer of polymer basis, and γ is the number of flexible bonds per monomer. Although these results agree with experimental data in the literature, a more definitive experimental test is needed. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Compatible polymer blends have been found to have widespread commercial applications. The simplest criterion for judging polymer—polymer miscibility in the solid state is the glass transition temperature (Tg), which can vary widely according to blend composition for a compatible system.Recently, an equation which predicts the Tg of intimate mixtures of compatible polymers has been derived, based on classical thermodynamics. Only a knowledge of the Tg and heat capacity increment (ΔCp) of each pure component is required to predict the Tg at any composition.In this paper, the validity of this entropy-based relationship is investigated for a variety of commercial compatible polymer blends, including some based on poly(vinyl chloride), polystyrene, and poly(2,6-dimethyl-,4-phenylene oxide). The Tg and ΔCp of each pure component are measured with a Perkin-Elmer DSC-2 differential scanning calorimeter, are predicted glass transition temperatures are compared with those observed experimentally.  相似文献   

5.
A novel method was developed to determine the ultra-low glass transition temperature (Tg) of materials through physical blending via differential scanning calorimetry. According to the Fox equation for polymer blends, a blend of two fully compatible polymers has only one Tg. The single Tg is a function of the Tgs of the two simple polymers. Thus, the ultra-low Tg of one material can be obtained from the Tgs of another polymer and their blends. The error of Tg measurements depends on the measurement error of the Tgs for the blends and another polymer. The method was successfully applied to determine the Tgs of acetyl tributyl citrate (ATBC), tributyl citrate (TBC) and poly(ethylene glycol)s (PEG)s with different molecular weights. The Tgs for ATBC, TBC, PEG-4000 and PEG-800 were ?57.0 °C, ?62.7 °C, ?76.6 °C and ?83.1 °C, respectively. For all the samples, the standard deviation of measurements was less than 3.3 °C, and the absolute error of measurements was theoretically not more than 5.3 °C. These results indicate that this method has acceptable precision and accuracy.  相似文献   

6.
New plasticization ways based on low molecular plasticizers from citrates family were investigated to improve the ductility of poly(lactide) (PLA). Grafting reactions between anhydride-grafted PLA (MAG-PLA) copolymer with hydroxyl-functionalized citrate plasticizer, i.e. tributyl citrate (TbC), were so-carried out through reactive extrusion. TributylO-acetylcitrate (ATbC) was used as a non-functionalized reference. Both plasticizers drastically decreased the Tg of PLA. However, the grafting reaction of TbC into MAG-PLA revealed a shift of PLA Tg toward higher values. After 6 months of aging, no phase separation was observed. However, plasticizer leaching was noticed in the case of PLA/ATbC materials, leading to the shift of Tg toward lower temperatures. In contrast, no major leaching phenomenon was noticed in PLA/TbC and PLA/MAG-PLA/TbC blends, indicating that the mobility restriction derived from the hydrogen bonding that can occur between PLA and TbC as well as the grafting reaction of TbC into MAG-PLA enabled to reduce leaching phenomena.  相似文献   

7.
Poly(methyl acrylate) (PMA), poly(vinyl acetate) (PVAc) and poly(n-isopropylacrylamide) (PNIPAAm) with their respective Tg of 6, 32, and 145 °C were employed to gel the LiI/I2/tertiary butylpyridine electrolyte system for preparation of the gelled-type dye-sensitized solar cells (DSSC). The light-to-electricity conversion efficiencies of DSSCs gelled by PMA, PVAc, and PNIPAAm were 7.17%, 5.62%, and 3.17%, respectively under simulated AM 1.5 sunlight irradiation, implying that utilizing the polymer of lower Tg to gel the electrolytes leaded to better performance of the DSSCs. Their short-circuit current density and IPCE also showed the similar trend. Electrochemical impedance spectroscopy of the gelled DSSCs revealed that utilizing the polymer of lower Tg resulted in lower impedance associated with the Nernstian diffusion within the electrolytes. The results were consistent with the observation that the molar conductivity of gelled electrolytes was higher as the polymer of lower Tg was applied, which can be justified by Vogel-Tammann-Fulcher (VTF) equation.  相似文献   

8.
The effect of various benzenesulfonamide (BSA) plasticizers on the amorphous phase of semicrystalline polydodecamide (PA‐12) has been investigated. MonoBSAs appear as efficient glass‐transition temperature (Tg) depressors because of their miscibility with the host polyamide (PA), low glass transition, and small molecule size. PA‐12's Tg shifts from 50 to about 0 °C at 20 mol % of the most efficient molecules. Comparatively, the more bulky bisBSAs appear to induce less important absolute Tg decreases (30 K at 20 mol %), although these appear as more important when considering the polymer Tg to plasticizer Tg difference. This unexpected observation could be ascribed to both the amide‐sulfonamide interactions and the sterically generated disorder within the polyamide because of the plasticizer molecule's size. Phase‐separation behavior of BSA plasticizers within the host PA has also been investigated. Crystalline phenyl‐SO2NH2, for instance, dephased beyond 20 mol % in PA‐12, forming distinct 1–2 micrometer wide crystalline domains as a result of its high propensity to crystallize upon cooling from the melt. By contrast, slow crystallizing N,N‐dimethylBSA, which lacks any specific interaction for PA‐12, remained nevertheless dispersed at a molecular level (metastable state, no phase separation) when vitrification of the host PA‐12 amorphous phase occurred on cooling. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2208–2218, 2002  相似文献   

9.
This work presents new results concerning characterization of polymethyl(α-n-pentyl)acrylate polymer by means of thermal analysis. In differential scanning calorimetry investigations, the measured values of T g, T f and ΔC p, i.e. the glass transition temperature, the fictive temperature and the heat capacity step at T g, show that the polymer can be considered as fragile. Thermogravimetric analysis revealed two mass losses, the first, at low temperature, being associated with the evaporation of water molecules, and the second, at high temperature, corresponding degradation of the polymer. This degradation is a two-step phenomenon. Finally, study of the β and the α transitions by elementary and complex TSDC led to the following values: T β=?40°C, T α=36°C, T c=47°C, τc=2.5 s and ΔH=85 to 165 kJ mol?1.  相似文献   

10.
11.
A direct microscopic observation procedure is applied to study the deformation of amorphous PET decorated with a thin metal layer when stretching is performed at different draw rates and at temperatures below and above the glass transition temperature T g. Analysis of the formed microrelief allows stress fields responsible for the deformation of the polymer to be visualized and characterized. When tensile drawing is performed at temperatures above T g, inhomogeneity of stress fields increases with the increasing draw rate; at high draw rates, the stress-induced crystallization of PET takes place. In the case of drawing the polymer at temperatures below T g, direct microscopic observations make it possible to visualize the development of shear bands that appear in the unoriented part of the polymer specimen adjacent to the neck. The shear bands are oriented at an angle of about 45° with respect to the draw direction. When necking involves the unoriented part of the polymer, shear bands abruptly change their orientation and become aligned practically parallel to the draw axis.  相似文献   

12.
Crystallization of a semi-crystalline polyolefin in the presence of low molecular weight modifiers was quantified by differential scanning calorimetry and optical microscopy. The polyolefin was a commercial grade of isotactic poly(1-butene) (iPB). Two modifiers were used: an oligomeric plasticizer, designated HOAO, which decreased the glass transition temperature (Tg) of the system, and an oligomeric tackifier, designated HOCP, which increased Tg. Binary iPB/modifier blends containing 10% or 20% by weight of HOAO or HOCP were examined to determine how their addition affects Tg, while ternary iPB/HOAO/HOCP blends containing 10% or 20% by weight of total modifier were examined to determine the effects of dilution by using a ratio of HOAO to HOCP that matched the Tg of iPB. The addition of modifier decreased the nucleation rate, spherulitic crystal growth rate, and final crystallinity of each blend. However, only the nucleation rate showed a dependence on the type of modifier, with nucleation retarded more by HOCP than by HOAO. A Hoffman-Weeks analysis of the melting point as a function of crystallization temperature confirmed that the driving force for nucleation was reduced, and that the effect was larger for HOCP. An Avrami analysis of the bulk crystallization kinetics was consistent with these observations, as the Avrami exponents were in the range of 3-4.  相似文献   

13.
Using the method of “molecular probes” in gas chromatography, glass-transitions in mixtures of poly(methyl methacrylate) with poly(vinyl chloride) are found. The strong variation of Tg for poly (methyl methacrylate) in mixtures with more than 20% of that polymer suggests interactions although Tg for poly(vinyl chloride) remains constant. The existence of a single Tg in mixtures with less than 20% poly(methyl methacrylate), on the other hand, suggests possible compatibility in these mixtures.  相似文献   

14.
Hydrostatic pressure usually increases the glass transition temperature Tg of a polymer glass by decreasing its free volume; if the pressurizing environment is soluble in the polymer, however, one might expect an initial decrease in Tg with pressure as the polymer is plasticized by the environment. Just such a minimum in the Tg of polystyrene (PS) is observed as the pressure of CO2 gas is increased over the range 0.1–105 MPa from both ultrasonic (1 MHz) measurements of Young's modulus E and static measurements of the creep compliance J. A time-temperature-pressure superposition law is obeyed by PS which allows a master curve for the compliance to be constructed and shift factors to be determined. A master curve for E is then obtained by using the Boltzmann superposition principle. The compliance J reaches a maximum, and E and Tg reach minima, at a CO2 pressure of ca. 20 MPa at both 34 and 45°C, which are above the critical temperature (31°C) of CO2. At the minimum, Tg is 41 at 45°C and 36 at 34°C, the larger depression at 34°C evidently corresponding to the higher solubility of CO2 at the lower temperature. The plasticization effect due to CO2 can be isolated by subtracting the effect of hydrostatic pressure alone from the experimental data. The results leave no doubt that at high pressures CO2 gas is a severe plasticizer for polystyrene.  相似文献   

15.
Multiple transitions have been identified by inverse gas-chromatography for fractions of poly(ethylene terephthalate) with Mn between 1.47 and 2.69 × 104. Depending on the thermal treatment, at least two liquid-liquid transitions Tll(1) and Tll(2) have been observed in addition to Tg and Tm; this feature is generally considered as characteristic of semi-crystalline polymers. The similarity of the dependence of Tg and Tll on the molecular weight of the polymer probes suggests a common molecular origin of these phenomena; the fact that Tll >Tg indicates that the Tll transitions involve longer chain segments. The melting temperature decreases with increasing molecular weight, suggesting again that the crystallinity and/or the size distribution will enlarge as the molecular weight of the polymer is made higher.  相似文献   

16.
Three chromophores with tricyanofuran and tricyanopyrroline electron acceptors were synthesized and doped in high glass transition temperature (T g) polymer poly(N-(4-acetoxylphenyl)maleimide-co-styrene, NAPMI-co-ST). The electro-optic (EO), optical, and thermal properties of the doped poly(NAPMI-co-ST) were characterized and discussed. After being corona poled under 12?kV, this high T g polymer material showed excellent EO activity and thermal stability. The highest EO coefficient (r 33) reached 48.2?pm?V?1 (1,310?nm) and could remain 90?% of the original value for 100?h at 85?°C. The EO coefficient was relatively higher compared with other high T g EO polymers. The thermal stability was also very good and the manufacture process was convenient and applicable for device fabrication.  相似文献   

17.
The rotational relaxation data for free nitroxyl radicals in poly(ethylene glycol) samples of mol. wt 3000-22,000 gave for the glass-transition temperature (Tp) a value of ?60°, independent of molecular weight. The rotational activation energy was ~ 2 kJ/mole below Tg and ~ 10 kJ/mole above Tg. This indicated that the mechanism of motion below Tg differs from the above Tg. Evidently the rotating units of polymer are much smaller below Tg than above it. The rotational relaxation time (T) was found to be dependent on the molar volume of PEG (V) and to follow the empirical equations t = A exp (?kV1) and t = B exp (?kV1) where Va and V1 are the molar volumes (cm3/mol) when T < Tg and T > Tg respectively, and k ~ 1. Therefore the defects in which radicals are located are perhaps the dominant factor determining the dynamic state of probe radicals in polymers at low temperatures.  相似文献   

18.
Polystyrene composite films with different content of C60?+?C70 fullerene mix have been obtained from o-xylene solutions. The mass fraction of fullerene was varied from 0.01 to 0.1 mass%. The glass transition temperatures and specific heat capacities in range of 293?C423?K have been determined for the films by DSC method. The plasticization of the polymer is observed in thermal properties of the films under influence of small fullerene additions. The values of T g and C P decrease and thermal coefficient of heat capacity b increase as fullerene content increases up to 0.02 mass%. The effect of interaction between polymer and fullerene molecules on thermal properties becomes evident at higher fullerene content in range from 0.02 to 0.1 mass%. At this the values of T g and C P increase and b coefficient decrease with increasing content of fullerene. Concentration dependence of C P and b values is less steep for polymer composite films in elastic state at temperatures above T g. Molecular interactions in the composites are discussed in view of our-self and literature data.  相似文献   

19.
A series of aromatic diamines were polymerized with two aromatic dianhydrides, pyromellitic dianhydride and 3,3,4,4-biphenyltetracarboxylic dianhydride, and the resulting poly(amic acid)s were thermally cyclodehydrated to aromatic polyimides. The polyimides were characterized by determining the glass transition temperatures (Tg), thermal stability, coefficients of thermal expansion, and wide-angle X-ray diffraction. Structure-property relationships are elucidated and discussed in terms of the structural fragments in the polymer chain. The PMDA-based polyimides generally revealed a higher Tg than the corresponding BPDA-based analogues. Generally, the dilution of the imide content by the insertion of oxyphenylene segments into the diamines significantly reduced the Tg. The introduction of m- or o-phenylene units into the polymer backbone usually resulted in a decrease in Tg. The attachment of pendant groups on the backbone may lead to decreased or increased Tgs, depending on the structure of pendant groups. As evidenced by X-ray diffraction, the polyimides derived from rigid, rod-like diamines or the diamines having two or three p-oxyphenylene showed a higher crystalline tendency. The presence of aliphatic pendant groups slightly reduced the thermal stability of the polyimides. The other structural changes did not show a dramatic influence on the thermal stability. Some polyimides obtained from p- or m-phenylenediamine had low thermal expansion coefficients below 2×10−5°C−1.  相似文献   

20.
A series of new semi-ladder poly[bis(benzimidazobenzisoquinolinones)], obtained by the polycondensation of dinaphthalene dianhydrides and aromatic tetraamines was investigated by TG, DSC and DMA methods. The influence of polymer structure on the thermal behaviour of the poly[bis(benzimidazobenzisoquinolinones)] was examined. The polymers were found to be thermally stable with Td > 723 K in air and Tg ranging from 585 to 701 K. A good agreement was obtained in Tg values measured by DSC and DMA methods. It was found that some cross-linking processes occurred at temperatures above Tg. Some of the isothermal ageing curves were used to find the activation energies of isothermal cross-linking and decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号