首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Macrocyclic polyether or crown ether ester derivatives of acrylic and methacrylic acid were synthesized and polymerized. The cation binding properties of the polymers determined by extraction of picrate salts were similar to those obtained for poly(crown ether)s derived from styrene. In the presence of a crown-complexable cation both polymers form insoluble polysalt complexes with sodium carboxymethylcellulose, potassium poly(styrene sulfonate), and potassium polyacrylate. The extent of precipitation depends on the type and concentration of cation as well as on the ratio polyanion to poly(crown ether). The precipitate appears to have an equal number of positive and negative charges. An insoluble hydrogen-bonded complex is formed in the absence of salt when poly(vinylbenzo-18-crown-6) and poly(acrylic acid) are mixed in 0.01M HCl. Organic solutes bound to the poly(crown ether)s, which occur in an aqueous mixture of poly(vinylbenzo-18-crown-6) and picrate anions, are precipitated with the poly(crown ether) when the polysalt complex is formed.  相似文献   

2.
An interpolymer complex was prepared by mixing aqueous solutions of poly(ethylene oxide) (PEO) and of a poly(carboxylic acid), i.e., poly(acrylic acid)(PAA), poly(methacrylic acid)(PMAA), or styrene-maleic acid copolymer(PSMA). The complexation mechanism was discussed on the basis of results of such experimental methods as viscosity, potentiometric titration, and turbidimetry. The hydrogen bond is primarily involved in these complexations, but the influence of hydrophobic interaction on complexation can not be ignored. If the degree of dissociation α of carboxylic acid or the degree of polymerization Pn of PEO was perceptibly changed, a stable complex was obtained at about α 0.1 or Pn (PEO) = 40 for PMAA, 200 for PAA. This fact indicates that more than a definite number of binding sites are necessary for a stable interpolymer complex to be formed and that cooperative interaction among active sites plays an important role in complex formation.  相似文献   

3.
Insoluble polysalt complexes are formed on mixing aqueous solutions of poly(vinylbenzo-18-crown-6) (P18C6) and sodium carboxymethylcellulose (CMC) in the presence of certain salts. Potassium salts are especially effective, converting the neutral P18C6 into a polycation which then interacts with sodium CMC. Nearly quantitative precipitation can be achieved at low KCl concentration (ca. 0.005M) for a crown/carboxylate ratio of approximately 5, while for 0.1–0.2M KCl the precipitation is close to completion at a crown/CMC ratio of about 2. The precipitates solubilize again on addition of water or concentrated KCl. Precipitation also occurs with CsCl but not with NaCl. Potentiometric measurements were carried out to determine the complex formation constant of the three alkali ions to P18C6. Their values can be used to rationalize the observed phenomena. Charge equivalence appears to play an important role in the formation of the polysalt complexes.  相似文献   

4.
5.
As a highly reactive tactic vinyl polymer, syndiotactic poly(methacrylic acid hydrazide) (s-PMH) was prepared from syndiotactic poly(methyl methacrylate) (s-PMMA) by hydrazinolysis. The s-PMH served as the starting polymer to prepare other tactic vinyl homopolymers having optically active functional carboxylic acids or N-protected amino acids as side chains. The condensation of the acids was carried out in water by water-soluble carbodiimides. Conversion was followed by pH and the resulting homopolymers characterized by 1H- and 13C-NMR spectroscopy. The NMR-spectra were assigned by comparison with low molecular weight model compounds, derived from pivalic acid hydrazide. In a third on-polymer reaction, the OH-groups present in the side chains of some of the polymers were employed for adding an optically active isocyanate to yield branched side chains.  相似文献   

6.
Glass beads were etched with acids and bases to increase the surface porosity and the number of silanol groups that could be used for grafting materials to the surfaces. The pretreated glass beads were functionalized using 3‐aminopropyltriethoxysilane (APS) coupling agent and then further chemically modified by reacting the carboxyl groups of carboxylic acid polymers with the amino groups of the pregrafted APS. Several carboxylic acid polymers and poly(maleic anhydride) copolymers, such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMA), poly(styrene‐alt‐maleic anhydride) (PSMA), and poly(ethylene‐alt‐maleic anhydride) (PEMA) were grafted onto the bead surface. The chemical modifications were investigated and characterized by FT‐IR spectroscopy, particle size analysis, and tensiometry for contact angle and porosity changes. The amount of APS and the different polymer grafted on the surface was determined from thermal gravimetric analysis and elemental analysis data. Spectroscopic studies and elemental analysis data showed that carboxylic acid polymers and maleic anhydride copolymers were chemically attached to the glass bead surface. The improved surface properties of surface modified glass beads were determined by measuring water and hexane penetration rates and contact angle. Contact angles increased and porosity decreased as the molecular weights of the polymer increased. The contact angles increased with the hydrophobicity of the attached polymer. The surface morphology was examined by scanning electron microscopy (SEM) and showed an increase in roughness for etched glass beads. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Poly(carboxylic acid)-dimethylalkylamine complexes were prepared and examined by various methods including infrared spectrometry and chemical titrations. FTIR measurements provided some of the most complete and detailed insights into the type and the stoichiometry of the acid-base complexes. A (1:1) stoichiometric complexation of the poly(carboxylic acid) with tertiary amines was involved in protic solvents. A threshold degree of complexation of 42% was obtained in such a macromolecular system. The equilibrium constant of the proton transfer reaction K was estimated to be independent on the alkyl chain length of the base reagent. Besides the formation of the acid-base complexes, a plasticizing effect of the amine derivatives was demonstrated by differential calorimetry. A Tg depression could be both attributed to the amine molecules linked to the polymer backbone via ionic bonds and to the free molecules dissolved within the free volume of the polymer.  相似文献   

8.
Control of the functional group distribution is of fundamental importance in the design of functional polymer particles, particularly in biological applications. Surface-functionalized particles are useful for bioconjugation and medical diagnostics, while internally functionalized particles may have applications in drug delivery. We have prepared a series oftemperature-sensitive poly(N-isopropylacrylamide) (PNIPAM)-based microgels containing carboxylic acid functional groups via copolymerization with methacrylic acid and acrylamide, which was selectively hydrolyzed under optimized conditions to generate the carboxylic acid functionality. The resulting microgels were analyzed using conductometric and potentiometric titration, dynamic light scattering, and electrophoresis. Acrylamide-containing microgels hydrolyzed below the volume phase transition temperature (VPTT) show broad particle size versus temperature profiles, relatively low electrophoretic mobilities at basic pH, and time-dependent base titration profiles, suggesting the presence of internal functional groups whose titration is diffusion-controlled. Methacrylic acid containing microgels show sharper particle size versus temperature profiles, higher electrophoretic mobilities at basic pH, and time-independent base titration profiles, suggesting the presence of a "core-shell" structure with primarily surface functionalization. Similar results were obtained when acrylamide-containing microgels were hydrolyzed at temperatures above the VPTT. Thus, through selection of comonomer and hydrolysis conditions, we have developed strategies to control and characterize the number and distribution ofcarboxylic acid functional groups in PNIPAM-based microgels.  相似文献   

9.
Reaction of poly(succinimide) with a mixture of 5-aminopentanol and 6-aminohexanol produced new thermoresponsive polymers based on biodegradable poly(amino acids)s, poly(N-substituted alpha/beta-asparagine)s, showing a clear LCST in water.  相似文献   

10.
Stereoblock poly(lactic acid) (sb-PLA) is incorporated into a 1:1 polymer blend system of poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) that has a high molecular weight to study its addition effect on the stereocomplex (sc) formation of PLLA and PDLA. The ternary polymer blend films are first prepared by casting polymer solutions of sb-PLA, PLLA, and PDLA with different compositions. Upon increasing the content of sb-PLA in the blend films the sc crystallization is driven to a higher degree, while the formation of homo-chiral (hc) crystals is decreased. Lowering the molecular weight of the incorporated sb-PLA effectively increases the sc formation. Consequently, it is revealed that sb-PLA can work as a compatibilizer to improve the poor sc formation in the polymer blend of PLLA and PDLA.  相似文献   

11.
The complexation of uranyl ion (UO22+) in aqueous solution with polymers containing carboxylic acid groups was studied potentiometrically. Overall formation constants of the uranyl complexes with poly(methacrylic acid) and crosslinked poly(acrylic acid) were much larger than those with the corresponding low molecular carboxylic acids. Decrease in the viscosity of the polymer solution on adding uranyl ion indicated that poly(acrylic acid) forms intra-polymer chelates with uranyl ion. The crosslinked poly(acrylic acid) adsorbed uranyl ions at higher efficiency than transition metal ions.  相似文献   

12.
13.
Comb-type copolymers of poly(acrylic acid) grafted with poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPSA) side chains form with poly(ethylene glycol), at low pH, water-soluble hydrogen-bonding interpolymer complexes. Turbidimetry, viscometry, and dynamic light scattering measurements suggest that compact, negatively charged, colloidal nanoparticles are formed at pH<3.75. The influence of the structure of the graft copolymers and of the ionic strength of the solution on the size of these nanoparticles was investigated. It was found that their hydrodynamic radius decreases by increasing the molecular mass of the PAMPSA side chains of the graft copolymer and increases with increasing the ionic strength of the solution.  相似文献   

14.
The complex formation between vinyl ether of poly(ethylene glycol‐co‐vinyl butyl ether) with poly(acrylic acid) has been considered in aqueous and isopropanol solutions. The effect of copolymer composition on the complex formation process was clarified. It has been shown that the incorporation of hydrophobic fragments into macromolecules enhances the hydrophobic stabilization of polycomplexes in aqueous solutions. In organic media this effect disappears. The stability of polycomplexes formed both in aqueous and in organic solutions in respect to the addition of dimethylformamide has been studied.  相似文献   

15.
16.
Soluble brominated poly(arylene ether)s containing mono‐ or dibromotetraphenylphenylene ether and octafluorobiphenylene units were synthesized. The polymers were high molecular weight (weight‐average molecular weight = 115,100–191,300; number‐average molecular weight = 32,300–34,000) and had high glass‐transition temperatures (>279 °C) and decomposition temperatures (>472 °C). The brominated polymers were phosphonated with diethylphosphite by a palladium‐catalyzed reaction. Quantitative phosphonation was possible when 50 mol % of a catalyst based on bromine was used. The diethylphosphonated polymers were dealkylated by a reaction with bromotrimethylsilane in carbon tetrachloride followed by hydrolysis with hydrochloric acid. The polymers with pendant phosphonic acid groups were soluble in polar solvents such as dimethyl sulfoxide and gave flexible and tough films via casting from solution. The polymers were hygroscopic and swelled in water. They did not decompose at temperatures of up to 260 °C under a nitrogen atmosphere. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3770–3779, 2001  相似文献   

17.
Covalently bound protoporphyrin IX was used as a fluorophore to investigate the interpolymer complex formation between the poly(carboxylic acid)s, PMAA/PAA and poly(N-vinyl pyrrolidone), PVP, poly(ethylene oxide), PEO or poly(ethylene glycol), PEG. Absorption and emission spectral properties of protoporphyrin IX bound to PAA, PMAA and PVP have been studied. Protoporphyrin IX in poly(MAA-co-PPIX) was found to be present in the dimer or higher aggregated form at low pH due to the environmental restriction imposed by the polymer whereas in the case of poly(AA-co-PPIX) and poly(VP-co-PPIX), PPIX exists in monomeric form. The fluorescence intensity and lifetime of PPIX bound to poly(carboxylic acid)s increase on complexation through hydrogen bonding with PVP, PEO and PEG due to the displacement of water molecules in the vicinity of the PPIX. Poly(MAA-co-PPIX) shows longer fluorescence lifetime due to the more compact interpolymer complexation as compared to poly(AA-co-PPIX) due to the enhanced hydrophobicity of PMAA. Poly(VP-co-PPIX) shows a decrease in the fluorescence lifetime on complexation with PMAA or PAA due to the hydrophilic and microgel like environment of the fluorophore bound to PVP. The contrasting behaviour of the same polymer adduct with respect to the site of the fluorophore is interpreted to be due to the solvent structure which determines the environment of the fluorophore.  相似文献   

18.
The surface polyion complex gel (sPIC gel), which possesses chemically bonded nonionic gel moiety, was designed using N‐vinylacetamide (NVA), N‐vinylforamide (NVF), and vinyl phosphonic acid (VPA). Taking advantage of the property of NVF as vinylamine (VAm) precursor, the cationic moiety was introduced only onto the surface of poly(NVA‐co‐NVF), producing surface hydrolyzed poly(NVA‐co‐NVF‐co‐VAm), and the successive polymerization of VPA inside the gel successfully produced sPIC gel. The swelling ratio of the sPIC gel was investigated under various pH conditions, and compared with that of the fully polyion complex gel (PIC gel), using totally hydrolyzed poly(NVA‐co‐VAm). The swelling ratio of sPIC gel ranged between 14 and 25, while that of the PIC gel ranged between 2 and 5. The anionic compound, AR, showed a sustained release from sPIC gel at pH 2, due to the electrostatic interactions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 562–566  相似文献   

19.
Interpolymer adduct formation between poly(N-vinylpyrrolidone) (PVP) and poly(methacrylic acid) (PMAA) is mainly due to hydrogen bonding. It is found that the interpolymer adduct formation is enhanced in the presence of Cu(II). A simple turbidity measurement making use of a spectrophotofluorometer is described for the study of the interpolymer adduct formation. Enhanced adduct formation in the presence of Cu(II) is described by the empirical relation d[PAd]/D[PVP] = k × 10[Cu(II)]α, where PAd represents the interpolymer adduct and α and k are constants. Similar results have been obtained in the case of interpolymer adduct formation between poly(acrylic acid) (PAA) and PVP. In the above expression α signifies the influence of chelation on Cu(II)–PAA/PMAA–PVP-type complex formation and k is the extent of PVP–PAA/PMAA interaction. The enhancement of adduct formation in the presence of Cu(II) is more in PAA than in PMAA. Turbidity and viscosity measurements further indicate that the influence of Cu(II) on interpolymer adduct formation between PVP and PMAA or PAA is more in the case of PAA than PMAA, as PAA is a better chelating ligand. But the extent of adduct formation is more in the case of PMAA in the absence of Cu(II) ions due to hydrophobic interactions exerted by methyl groups.  相似文献   

20.
To regulate the pH value of an aqueous solution containing polyelectrolyte by photoirradiation, an azoaromatic poly(carboxylic acid), acrylic acid(AA)-p-phenylazoacrylanilide (PAAn) copolymer was synthesized and the photoresponse of the polymer solution was investigated. AA-PAAn copolymer, which takes a compact form in the ordinary state owing to the presence of azoaromatic side chains, is transformed into an extended form when azoaromatic moieties are isomerized by photoirradiation. Thus, the pH value of the solution can be reversible regulated by irradiation and interruption of light through a change in polymer conformation. The range of the pH change was about 0.15. These phenomena can be explained on the basis of polarity change induced by the photoisomerization of azoaromatic side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号