首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stable isotope dilution–selective reaction monitoring–mass spectrometry (SID-SRM-MS) has been widely used for the absolute quantitative analysis of proteins. However, when performing the large-scale absolute quantification of proteins from a more complex tissue sample, such as mouse liver, in addition to a high-throughput approach for the preparation and calibration of large amounts of stable-isotope-labelled internal standards, a more powerful separation method prior to SRM analysis is also urgently needed. To address these challenges, a high-throughput absolute quantification strategy based on an improved two-dimensional reversed-phase (2D RP) separation and quantification concatemer (QconCAT) approach is presented in this study. This strategy can be used to perform the simultaneous quantification of hundreds of proteins from mouse liver within one week of total MS measurement time. By using calibrated synthesised peptides from the protein glutathione S-transferase (GST), large amounts of GST-tagged QconCAT internal standards corresponding to hundreds of proteins can be accurately and rapidly quantified. Additionally, using an improved 2D RP separation method, a mixture containing a digested sample and QconCAT standards can be efficiently separated and absolutely quantified. When a maximum gradient of 72 min is employed in the first LC dimension, resulting in 72 fractions, identification and absolute quantification experiments for all fractions can be completed within one week of total MS measurement time. The quantification approach developed here can further extend the dynamic range and increase the analytical sensitivity of SRM analysis of complex tissue samples, thereby helping to increase the coverage of absolute quantification in a whole proteome.
Figure
High-throughput absolute quantification of proteins by an improved 2D RP separation and QconCAT approach  相似文献   

2.
Phenylketonuria (PKU) is commonly included in the newborn screening panel of most countries, with various techniques being used for quantification of l-phenylalanine (Phe). To diagnose PKU as early as possible in newborn screening, a rapid and simple method of analysis was developed. Using direct analysis in real time (DART) ionization coupled with triple-quadrupole tandem mass spectrometry (TQ-MS/MS) and with use of a 12 DIP-it tip scanner autosampler in positive ion mode, we analyzed dried blood spot (DBS) samples from PKU newborns. The concentration of Phe was determined using multiple reaction monitoring mode with the nondeuterated internal standard N,N-dimethylphenylalanine. The results of the analysis of DBS samples from newborns indicated that the DART-TQ-MS/MS method is fast, accurate, and reproducible. The results prove that this assay as a newborn screen for PKU can be performed in 18 s per sample for the quantification of Phe in DBS samples. DART-TQ-MS/MS analysis of the Phe concentration in DBS samples allowed us to screen newborns for PKU. This innovative protocol is rapid and can be effectively applied on a routine basis to analyze a large number of samples in PKU newborn screening and PKU patient monitoring.
Figure
The method can quantify the amount of phenylalanine in dried blood spot of newborn by using direct analysis in real time (DART) coupled with triple-quadrupole tandem mass spectrometry  相似文献   

3.
Direct reductive methylation of peptides is a common method for quantitative proteomics. It is an active derivatization technique; with participation of the dimethylamino group, the derivatized peptides preferentially release intense a1 ions. The advantageous generation of a1 ions for quantitative proteomic profiling, however, is not desirable for targeted proteomic quantitation using multiple reaction monitoring mass spectrometry; this mass spectrometric method prefers the derivatizing group to stay with the intact peptide ions and multiple fragments as passive mass tags. This work investigated collisional fragmentation of peptides whose amine groups were derivatized with five linear ω-dimethylamino acids, from 2-(dimethylamino)-acetic acid to 6-(dimethylamino)-hexanoic acid. Tandem mass spectra of the derivatized tryptic peptides revealed different preferential breakdown pathways. Together with energy resolved mass spectrometry, it was found that shutting down the active participation of the terminal dimethylamino group in fragmentation of derivatized peptides is possible. However, it took a separation of five methylene groups between the terminal dimethylamino group and the amide formed upon peptide derivatization. For the first time, the gas-phase fragmentation of peptides derivatized with linear ω-dimethylamino acids of systematically increasing alkyl chain lengths is reported. Figure
?  相似文献   

4.
Four new Standard Reference Materials (SRMs) have been developed to assist in the quality assurance of chemical contaminant measurements required for human biomonitoring studies, SRM 1953 Organic Contaminants in Non-Fortified Human Milk, SRM 1954 Organic Contaminants in Fortified Human Milk, SRM 1957 Organic Contaminants in Non-Fortified Human Serum, and SRM 1958 Organic Contaminants in Fortified Human Serum. These materials were developed as part of a collaboration between the National Institute of Standards and Technology (NIST) and the Centers for Disease Control and Prevention (CDC) with both agencies contributing data used in the certification of mass fraction values for a wide range of organic contaminants including polychlorinated biphenyl (PCB) congeners, chlorinated pesticides, polybrominated diphenyl ether (PBDE) congeners, and polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners. The certified mass fractions of the organic contaminants in unfortified samples, SRM 1953 and SRM 1957, ranged from 12 ng/kg to 2200 ng/kg with the exception of 4,4′-DDE in SRM 1953 at 7400 ng/kg with expanded uncertainties generally <14 %. This agreement suggests that there were no significant biases existing among the multiple methods used for analysis.
Figure
Comparison of Concentrations of Selected Compounds in Human Serum and Human Milk Standard Reference Materials (SRMs)  相似文献   

5.
Hydroxyl radical-mediated oxidative footprinting coupled to mass spectrometric analysis is an attractive technique for protein surface mapping, conformational changes monitoring, and protein–ligand interfaces mapping in solution. In this technique, a protein is oxidized by in situ-generated hydroxy radicals and the site and rate of oxidation can be determined by proteolysis followed by mass spectrometric analysis. Changes in peptide oxidation rate can then be correlated to the changes in solvent exposure, and information about conformational changes or interaction domains can be obtained. The method relies, therefore, on the accurate measurements of peptide oxidation rate. Here, we describe a new label-free method to determine the oxidation rate of peptides that is based on the consumption of the unoxidized peptide instead of measuring the formation of oxidized peptides. The reaction rate thus obtained presents a better linearity and lower variation when compared to the traditional method. The label-free method is also simpler to implement and automation can be achieved through label-free quantitation software.
Figure
New label free method for the determination of reaction rates in oxidative footprinting experiments  相似文献   

6.
PEGylation has been widely used to improve the biopharmaceutical properties of therapeutic proteins and peptides. Previous studies have used multiple analytical techniques to determine the fate of both the therapeutic molecule and unconjugated poly(ethylene glycol) (PEG) after drug administration. A straightforward strategy utilizing liquid chromatography–mass spectrometry (LC–MS) to characterize high-molecular weight PEG in biologic matrices without a need for complex sample preparation is presented. The method is capable of determining whether high-MW PEG is cleaved in vivo to lower-molecular weight PEG species. Reversed-phase chromatographic separation is used to take advantage of the retention principles of polymeric materials whereby elution order correlates with PEG molecular weight. In-source collision-induced dissociation (CID) combined with selected reaction monitoring (SRM) or selected ion monitoring (SIM) mass spectrometry (MS) is then used to monitor characteristic PEG fragment ions in biological samples. MS provides high sensitivity and specificity for PEG and the observed retention times in reversed-phase LC enable estimation of molecular weight. This method was successfully used to characterize PEG molecular weight in mouse serum samples. No change in molecular weight was observed for 48 h after dosing.
Figure
Correlation between log PEG MW and retention time observed by reversed-phase LC-MS with in-source fragmentation  相似文献   

7.
8.
Three hydroxypropyl methylcellulose samples (HPMC1–3, DSMe?=?1.45, 1.29, and 1.36; MSHP?=?0.28, 0.46, and 0.84) were analyzed with respect to their methyl and hydroxypropyl substitution pattern in the polymer chains. Ionization yield of HPMC oligomers in electrospray ionization ion trap mass spectrometry (ESI-IT-MS) is strongly influenced by the hydroxypropyl pattern. Therefore, a sample derivatization procedure, as well as suitable measurement conditions that enable relative quantification were elaborated. Analysis was performed by negative ESI-IT-MS after per(deutero)methylation, partial depolymerization, and reductive amination with m-aminobenzoic acid. Measurement parameters like solvent, trap drive, and voltages of the ion transportation unit were studied with regard to the suitability for quantitative evaluation. Using direct infusion of the samples, strong influence of trap drive and octopole settings was observed. Optimized measurement conditions were used for the determination of the HP pattern of the permethylated samples by direct infusion. The methyl pattern was determined from the perdeuteromethylated samples by high-performance liquid chromatography–electrospray tandem mass spectrometry. For HPMC1, substituents were both found to fit the random distribution model. The other two samples showed pronounced heterogeneity which could be interpreted in more detail by extracting methyl subpatterns depending on the number of HP groups.
Figure
Determination of the substituent distribution in hydroxypropyl methylcellulose oligomers by ESI-IT-MS (negative mode) after labeling with m-aminobenzoic acid  相似文献   

9.
10.
11.
Fluoro(silyl)acetylenes, which were prepared by reaction of 1,1-difluoroethylene with silyl chlorides, reacted with triethylamine to give dark-brown colored polyfluoro(silyl)acetylene powders in excellent to moderate isolated yields. In contrast, the corresponding nonfluorinated acetylene was unable to react with triethylamine at all to afford poly(silyl)acetylene under similar conditions. Polyfluoro(silyl)acetylenes thus obtained were nanometer size-controlled cubic fine particles with a good dispersibility and stability in a variety of solvents. These polyfluoro(silyl)acetylene nanoparticles exhibited clear absorption and emission spectra related to the conjugated units in polymer main chain. Furthermore, these polyfluoro(silyl)acetylene nanoparticles were applied to the surface modification of poly(methyl methacrylate) [PMMA] film to exhibit a higher oleophobicity imparted by fluorine on their surface, compared to that on the reverse side.
Figure
New polyfluoro(silyl)acetylenes were prepared by reaction of the creesponding fluoro(silyl)acetylenes with triethylamine in excellent to moderate isolated yields. In contrast, the corresponding nonfluorinated silylacetylene was unable to give poly(silyl)acetylene under similar conditions. These polyfluoro(silyl)acetylenes thus obtained can form the nanometer size-controlled cubic fine particles (within 100 nm) in a variety of solvents.  相似文献   

12.
Previously, we reported that MALDI spectra of peptides became reproducible when temperature was kept constant. Linear calibration curves derived from such spectral data could be used for quantification. Homogeneity of samples was one of the requirements. Among the three popular matrices used in peptide MALDI [i.e., α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and sinapinic acid (SA)], homogeneous samples could be prepared by conventional means only for CHCA. In this work, we showed that sample preparation by micro-spotting improved the homogeneity for all three cases.
Figure
?  相似文献   

13.
14.
As part of a collaboration with the National Institutes of Health’s Office of Dietary Supplements and the Food and Drug Administration’s Center for Drug Evaluation and Research, the National Institute of Standards and Technology has developed Standard Reference Material (SRM) 3274 Botanical Oils Containing Omega-3 and Omega-6 Fatty Acids and SRM 3275 Omega-3 and Omega-6 Fatty Acids in Fish Oil. SRM 3274 consists of one ampoule of each of four seed oils (3274-1 Borage (Borago officinalis), 3274-2 Evening Primrose (Oenothera biennis), 3274-3 Flax (Linium usitatissimum), and 3274-4 Perilla (Perilla frutescens)), and SRM 3275 consists of two ampoules of each of three fish oils (3275-1 a concentrate high in docosahexaenoic acid, 3275-2 an anchovy oil high in docosahexaenoic acid and eicosapentaenoic acid, and 3275-3 a concentrate containing 60 % long-chain omega-3 fatty acids). Each oil has certified and reference mass fraction values for up to 20 fatty acids. The fatty acid mass fraction values are based on results from analyses using gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS). These SRMs will complement other reference materials currently available with mass fractions for similar analytes and are part of a series of SRMs being developed for dietary supplements.
Figure
Components of SRM 3274 Botanical Oils Containing Omega-3 and Omega-6 Fatty Acids  相似文献   

15.
We describe a chemical tag for duplex proteome quantification using neutron encoding (NeuCode). The method utilizes the straightforward, efficient, and inexpensive carbamylation reaction. We demonstrate the utility of NeuCode carbamylation by accurately measuring quantitative ratios from tagged yeast lysates mixed in known ratios and by applying this method to quantify differential protein expression in mice fed a either control or high-fat diet.
Figure
?  相似文献   

16.
The measurement of different mercury compounds in human blood can provide valuable information about the type of mercury exposure. To this end, our laboratory developed a biomonitoring method for the quantification of inorganic (iHg), methyl (MeHg), and ethyl (EtHg) mercury in whole blood using a triple-spike isotope dilution (TSID) quantification method employing capillary gas chromatography (GC) and inductively coupled dynamic reaction cell mass spectrometry (ICP-DRC-MS). We used a robotic CombiPAL® sample handling station featuring twin fiber-based solid-phase microextraction (SPME) injector heads. The use of two SPME fibers significantly reduces sample analysis cycle times making this method very suitable for high sample throughput, which is a requirement for large public health biomonitoring studies. Our sample preparation procedure involved solubilization of blood samples with tetramethylammonium hydroxide (TMAH) followed by the derivatization with sodium tetra(n-propyl)borate (NaBPr4) to promote volatility of mercury species. We thoroughly investigated mercury species stability in the blood matrix during the course of sample treatment and analysis. The method accuracy for quantifying iHg, MeHg, and EtHg was validated using NIST standard reference materials (SRM 955c level 3) and the Centre de Toxicologie du Québec (CTQ) proficiency testing (PT) samples. The limit of detection (LOD) for iHg, MeHg, and EtHg in human blood was determined to be 0.27, 0.12, and 0.16 μg/L, respectively.
Figure
?  相似文献   

17.
Glycation is a post-translational modification (PTM) that affects the physiological properties of peptides and proteins. In particular, during hyperglycaemia, glycation by α-dicarbonyl compounds generate α-dicarbonyl-derived glycation products also called α-dicarbonyl-derived advanced glycation end products. Glycation by the α-dicarbonyl compound known as glyoxal was studied in model peptides by MS/MS using a Fourier transform ion cyclotron resonance mass spectrometer. An unusual type of glyoxal-derived AGE with a mass addition of 21.98436 Da is reported in peptides containing combinations of two arginine-two lysine, and one arginine-three lysine amino acid residues. Electron capture dissociation and collisionally activated dissociation results supported that the unusual glyoxal-derived AGE is formed at the guanidino group of arginine, and a possible structure is proposed to illustrate the 21.9843 Da mass addition.
Figure
?  相似文献   

18.
Liquid-chromatography (LC) high-resolution (HR) mass spectrometry (MS) analysis can record HR full scans, a technique of detection that shows comparable selectivity and sensitivity to ion transitions (SRM) performed with triple-quadrupole (TQ)-MS but that allows de facto determination of “all” ions including drug metabolites. This could be of potential utility in in vivo drug metabolism and pharmacovigilance studies in order to have a more comprehensive insight in drug biotransformation profile differences in patients. This simultaneous quantitative and qualitative (Quan/Qual) approach has been tested with 20 patients chronically treated with tamoxifen (TAM). The absolute quantification of TAM and three metabolites in plasma was realized using HR- and TQ-MS and compared. The same LC-HR-MS analysis allowed the identification and relative quantification of 37 additional TAM metabolites. A number of new metabolites were detected in patients’ plasma including metabolites identified as didemethyl-trihydroxy-TAM-glucoside and didemethyl-tetrahydroxy-TAM-glucoside conjugates corresponding to TAM with six and seven biotransformation steps, respectively. Multivariate analysis allowed relevant patterns of metabolites and ratios to be associated with TAM administration and CYP2D6 genotype. Two hydroxylated metabolites, α-OH-TAM and 4′-OH-TAM, were newly identified as putative CYP2D6 substrates. The relative quantification was precise (<20 %), and the semiquantitative estimation suggests that metabolite levels are non-negligible. Metabolites could play an important role in drug toxicity, but their impact on drug-related side effects has been partially neglected due to the tremendous effort needed with previous MS technologies. Using present HR-MS, this situation should evolve with the straightforward determination of drug metabolites, enlarging the possibilities in studying inter- and intra-patients drug metabolism variability and related effects.
Figure
?  相似文献   

19.
Collision-induced dissociation (CID) spectra of long non-tryptic peptides are usually quite complicated and rather difficult to interpret. Disulfide bond formed by two cysteine residues at C-terminus of frog skin peptides precludes one to determine sequence inside the forming loop. Thereby, chemical modification of S–S bonds is often used in “bottom up” sequencing approach. However, low-energy CID spectra of natural non-tryptic peptides with C-terminal disulfide cycle demonstrate an unusual fragmentation route, which may be used to elucidate the “hidden” C-terminal sequence. Low charge state protonated molecules experience peptide bond cleavage at the N-terminus of C-terminal cysteine. The forming isomeric acyclic ions serve as precursors for a series of b-type ions revealing sequence inside former disulfide cycle. The reaction is preferable for peptides with basic lysine residues inside the cycle. It may also be activated by acidic protons of Asp and Glu residues neighboring the loop. The observed cleavages may be quite competitive, revealing the sequence inside disulfide cycle, although S–S bond rupture does not occur in this case.
Figure
?  相似文献   

20.
An extraction procedure based on the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) approach has been developed and used for analysis of particle-bound nitrated and oxygenated PAH derivatives (NPAH and OPAH, respectively). Several analytical conditions, for example GC injection temperature and MS detection settings, were optimized. This analytical procedure enabled simultaneous GC–NICIMS quantification of 32 NPAH and 32 OPAH (or other oxygenated compounds), including typical components of secondary organic aerosol (SOA) formed by photooxidation of PAH (e.g. 2-formyl-trans-cinnamaldehyde and 6H-dibenzo[b,d]pyran-6-one). The QuEChERS-like approach was optimized, including the nature of the extraction solvent, the sorbent used for clean-up, and extraction time. The final extraction procedure was based on brief mechanical agitation (vortex mixing for 1.5 min), with 7 mL acetonitrile as solvent. Because dispersive solid-phase extraction (d-SPE) did not provide satisfactory results, SPE using SiO2 was selected for sample purification. Identical results were obtained when the QuEChERS-like and traditional pressurised solvent extraction (PLE) procedures were compared for analysis of fortified ambient air particle samples. The procedure was validated by analysis of two aerosol standard reference materials (NIST SRM 1649b (urban dust) and SRM 2787 (fine particulate matter, <10 μm)). For numerous NPAH and OPAH, this is the first report of their quantification in both SRMs. Compared with other extraction methods, including PLE, the QuEChERS-like procedure resulted in increased productivity and reduced extraction cost. This paper shows that QuEChERS-like extraction procedures can be suitably adapted for molecular chemical characterization of aerosol samples and could be extended to other categories of compound.
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号