首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
Berinderjeet Kaur 《ZDM》2014,46(5):829-836
The official curriculum for mathematics in Singapore schools is based on a framework that has mathematical problem solving as its primary goal. It is detailed and one may say that the gap between the designated curriculum and teacher intended curriculum is often very narrow. This is so as the main source of instructional materials is textbooks which are very closely aligned with the official national curriculum. There is a dearth of research on the enactment of the curriculum in Singapore schools, with the few research studies done so far appearing to cover only a narrow focus. The author’s view is that, even though only a few such studies have been published, schools have always been engaged in small-scale investigations, the findings of which are necessary to guide decisions on matters related to choice of textbooks and pedagogies for improved student learning. Considering all the published research and the investigative work undertaken by educators in Singapore, it may be said that the conceptual model proposed by Remillard and Heck is rigorous. In addition, the issues in this particular issue of ZDM offer educators, both classroom teachers and others, very good perspectives for research on the enactment of the school mathematics curriculum.  相似文献   

2.
Gerald A. Goldin 《ZDM》2004,36(2):56-60
It has been suggested that activities in discrete mathematics allow a kind of new beginning for students and teachers. Students who have been “turned off” by traditional school mathematics, and teachers who have long ago routinized their instruction, can find in the domain of discrete mathematics opportunities for mathematical discovery and interesting, nonroutine problem solving. Sometimes formerly low-achieving students demonstrate mathematical abilities their teachers did not know they had. To take maximum advantage of these possibilities, it is important to know what kinds of thinking during problem solving can be naturally evoked by discrete mathematical situations—so that in developing a curriculum, the objectives can include pathways to desired mathematical reasoning processes. This article discusses some of these ways of thinking, with special attention to the idea of “modeling the general on the particular.” Some comments are also offered about students' possible affective pathways and structures.  相似文献   

3.
Alan H. Schoenfeld 《ZDM》2007,39(5-6):537-551
Problem solving was a major focus of mathematics education research in the US from the mid-1970s though the late 1980s. By the mid-1990s research under the banner of “problem solving” was seen less frequently as the field’s attention turned to other areas. However, research in those areas did incorporate some ideas from the problem solving research, and that work continues to evolve in important ways. In curricular terms, the problem solving research of the 1970s and 1980s (see, e.g., Lester in J Res Math Educ, 25(6), 660–675, 1994, and Schoenfeld in Handbook for research on mathematics teaching and learning, MacMillan, New York, pp 334–370, 1992, for reviews) gave birth to the “reform” or “standards-based” curriculum movement. New curricula embodying ideas from the research were created in the 1990s and began to enter the marketplace. These curricula were controversial. Despite evidence that they tend to produce positive results, they may well fall victim to the “math wars” as the “back to basics” movement in the US is revitalized.  相似文献   

4.
Richard Lesh  Lyn D. English 《ZDM》2005,37(6):487-489
In this paper we briefly outline the models and modelling (M&M) perspective of mathematical thinking and learning relevant for the 21st century. Models and modeling (M&M) research often investigates the nature of understandings and abilities that are needed in order for students to be able to use what they have (presumably) learned in the classroom in “real life” situations beyond school Nonetheless, M&M perspectives evolved out of research on concept development more than research on problem solving; and, rather than being preoccupied with the kind of word problems emphasized in textbooks and standardized tests, we focus on (simulations of) problem solving “in the wild.” Also, we give special attention to the fact that, in a technology-basedage of information, significant changes are occurring in the kinds of “mathematical thinking” that is coming to be needed in the everyday lives of ordinary people in the 21st century—as well as in the lives of productive people in future-oriented fields that are heavy users of mathematics, science, and technology.  相似文献   

5.
In the Netherlands, mathematics textbooks are a decisive influence on the enacted curriculum. About a decade ago, Dutch primary school mathematics textbooks provided hardly any opportunities to learn problem solving. In this study we investigated whether this provision has changed. In order to do so, we carried out a textbook analysis in which we established to what degree current textbooks provide non-routine problem-solving tasks for which students do not immediately have a particular solution strategy at their disposal. We also analyzed to what degree textbooks provide ‘gray-area’ tasks, which are not really non-routine problems, but are also not straightforwardly solvable. In addition, we inventoried other ways in which present textbooks facilitate the opportunity to learn problem solving. Finally, we researched how inclusive these textbooks are with respect to offering opportunities to learn problem solving for students with varying mathematical abilities. The results of our study show that the opportunities that the currently most widely used Dutch textbooks offer to learn problem solving are very limited, and these opportunities are mainly offered in materials meant for more able students. In this regard, Dutch mainstream textbooks have not changed compared to the situation a decade ago. A textbook that is the Dutch edition of a Singapore mathematics textbook stands out in offering the highest number of problem-solving tasks, and in offering these in the materials meant for all students. However, in the ways this textbook facilitates the opportunity to learn problem solving, sometimes a tension occurs concerning the creative character of genuine problem solving.  相似文献   

6.
Yoshinori Shimizu 《ZDM》2009,41(3):311-318
This paper aims to examine key characteristics of exemplary mathematics instruction in Japanese classrooms. The selected findings of large-scale international studies of classroom practices in mathematics are reviewed for discussing the uniqueness of how Japanese teachers structure and deliver their lessons and what Japanese teachers value in their instruction from a teacher’s perspective. Then an analysis of post-lesson video-stimulated interviews with 60 students in three “well-taught” eighth-grade mathematics classrooms in Tokyo is reported to explore the learners’ views on what constitutes a “good” mathematics lesson. The co-constructed nature of quality mathematics instruction that focus on the role of students’ thinking in the classroom is discussed by recasting the characteristics of how lessons are structured and delivered and what experienced teachers tend to value in their instruction from the learner’s perspective. Valuing students’ thinking as necessary elements to be incorporated into the development of a lesson is the key to the approach taken by Japanese teachers to develop and maintain quality mathematics instruction.  相似文献   

7.
张若军  高翔 《大学数学》2021,37(2):13-17
数学作为一门学校教育中历时较长的课程,在培养逻辑思维、规则意识、意志品格等科学素质方面发挥着积极的作用,是其他课程所无法比拟的.多年来,我国的数学教学常常忽视教学体系中蕴藏的丰富的哲学思想,哲学元素没有获得足够的挖掘和应有的重视.在“课程思政”理念的引领下,注重哲学视域下的高等数学“课程思政”教学,对于大学的数学教育工作者为国家培养优秀人才,意义深远.  相似文献   

8.
Keiko Hino 《ZDM》2007,39(5-6):503-514
In this paper, I summarize the influence of mathematical problem solving on mathematics education in Japan. During the 1980–1990s, many studies had been conducted under the title of problem solving, and, therefore, even until now, the curriculum, textbook, evaluation and teaching have been changing. Considering these, it is possible to identify several influences. They include that mathematical problem solving helped to (1) enable the deepening and widening of our knowledge of the students’ processes of thinking and learning mathematics, (2) stimulate our efforts to develop materials and effective ways of organizing lessons with problem solving, and (3) provide a powerful means of assessing students’ thinking and attitude. Before 1980, we had a history of both research and practice, based on the importance of mathematical thinking. This culture of mathematical thinking in Japanese mathematics education is the foundation of these influences.  相似文献   

9.
Problem solving is at the heart of the Singapore Mathematics curriculum. However, it remains a challenge for teachers to realise this curricular goal in practice. Here, we review the efforts of Singapore mathematics teacher educators in incorporating problem-solving (teaching) competency in teacher education and PD programmes. We discuss conceptual and practical issues, actions taken and changes made in building teachers?? capacity to enact a problem-solving curriculum in a school-based design experiment project. In the project, teachers learnt problem solving, observed and then carried out lessons, using the ??Mathematics Practical????akin to the science practical??as key to instruction and assessment.  相似文献   

10.
Despite mathematics educators’ research into more effective modes of teaching, lecture is still the dominant mode of instruction in undergraduate mathematics courses. Surveys suggest this is because most mathematicians believe this is the best way to teach. This paper answers a call by mathematics education researchers to explore mathematicians’ needs and goals concerning teaching. We interviewed eight mathematicians about findings in the mathematics education research literature concerning common pedagogical practices of instructors of advanced mathematics classes: “chalk talk,” the presentation of formal and informal content, and teacher questioning. We then analyzed the responses for resources, orientations, and goals that might influence the participants to engage in these practices. We describe how participants believed common lecturing practices allowed them to achieve their goals and aligned with their orientations. We discuss these findings in depth and consider what implications they may have for researchers that aim to change mathematicians’ teaching practices.  相似文献   

11.
Research in mathematics education that crosses national boundaries provides new insights into the development and improvement of the teaching and learning of mathematics. In particular, cross-national comparisons lead researchers to more explicit understanding of their own implicit theories about how teachers teach and how children learn mathematics in their local contexts as well as what is going on in school mathematics in other countries. Further, when researchers from multiple countries and regions study collaboratively aspects of teaching and learning of mathematics, the taken-for-granted familiar practices in the classroom can be questioned. Such cross-national comparisons provide opportunities for researchers and educators to probe typical dichotomies such as “high-performing” versus “low performing”, “teacher-centred versus student-centred”, or even “East versus West”, in searching for similarities and differences in educational policies and practices in different cultural contexts.  相似文献   

12.
Yeping Li  Yoshinori Shimizu 《ZDM》2009,41(3):257-262
What may teachers do in developing and carrying out exemplary or high-quality mathematics classroom instruction? What can we learn from teachers’ instructional practices that are often culturally valued in different education systems? In this article, we aim to highlight relevant issues that have long been interests of mathematics educators worldwide in identifying and examining teachers’ practices in high-quality mathematics classroom instruction, and outline what articles published herein can help further our understanding of such issues with cases of exemplary mathematics instruction valued in the Chinese Mainland, Hong Kong, Japan, Singapore, South Korea, and Taiwan.  相似文献   

13.
This paper deals with the challenge to establish problem solving as a living domain in mathematics education in The Netherlands. While serious attempts are made to implement a problem-oriented curriculum based on principles of realistic mathematics education with room for modelling and with integrated use of technology, the PISA 2003 results suggest that this has been successful in educational practice only to a limited extent. The main difficulties encountered include institutional factors such as national examinations and textbooks, and issues concerning design and training. One of the main challenges is the design of good problem solving tasks that are original, non-routine and new to the students. It is recommended to pay attention to problem solving in primary education and in textbook series, to exploit the benefits of technology for problem solving activities and to use the schools’ freedom to organize school-based examinations for types of assessment that are more appropriate for problem solving.  相似文献   

14.
Edward A. Silver 《ZDM》1997,29(3):75-80
Although creativity is often viewed as being associated with the notions of “genius” or exceptional ability, it can be productive for mathematics educators to view creativity instead as an orientation or disposition toward mathematical activity that can be fostered broadly in the general school population. In this article, it is argued that inquiry-oriented mathematics instruction which includes problem-solving and problem-posing tasks and activities can assist students to develop more creative approaches to mathematics. Through the use of such tasks and activities, teachers can increase their students’ capacity with respect to the core dimensions of creativity, namely, fluency, flexibility, and novelty. Because the instructional techniques discussed in this article have been used successfully with students all over the world, there is little reason to believe that creativity-enriched mathematics instruction cannot be used with a broad range of students in order to increase their representational and strategic fluency and flexibility, and their appreciation for novel problems, solution methods, or solutions.  相似文献   

15.
João Pedro da Ponte 《ZDM》2007,39(5-6):419-430
In Portugal, since the beginning of the 1990s, problem solving became increasingly identified with mathematical explorations and investigations. A number of research studies have been conducted, focusing on students’ learning, teachers’ classroom practices and teacher education. Currently, this line of work involves studies from primary school to university mathematics. This perspective impacted the mathematics curriculum documents that explicitly recommend teachers to propose mathematics investigations in their classrooms. On national meetings, many teachers report experiences involving students’ doing investigations and indicate to use regularly such tasks in their practice. However, this still appears to be a marginal activity in most mathematics classes, especially when there is pressure for preparation for external examinations (at grades 9 and 12). International assessments such as PISA and national assessments (at grades 4 and 6) emphasize tasks with realistic contexts. They reinforce the view that mathematics tasks must be varied beyond simple computational exercises or intricate abstract problems but they do not support the notion of extended explorations. Future developments will show what paths will emerge from these contradictions between promising research and classroom reports, curriculum orientations, professional experience, and assessment frameworks and instruments.  相似文献   

16.
Beliefs influencing students’ mathematical learning and problem solving are structured and intertwined with larger affective and cognitive structures. This theoretical article explores a psychological concept we term an engagement structure, with which beliefs are intertwined. Engagement structures are idealized, hypothetical constructs, analogous in many ways to cognitive structures. They describe complex “in the moment” affective and social interactions as students work on conceptually challenging mathematics. We present engagement structures in a self-contained way, paying special attention to their theoretical justification and relation to other constructs. We suggest how beliefs are characteristically woven into their fabric and influence their activation. The research is based on continuing studies of middle school students in inner-city classrooms in the USA.  相似文献   

17.
The U.S. generally has a less intense mathematics curriculum in the middle school grades than China. Some factors contributing to the lower intensity in the U.S. mathematics curriculum are textbooks with extensive drill, repetition of content, lack of challenging problem solving, lower curricular and cultural expectations, and ability grouping. In comparison, China utilizes challenging problem solving, sequential development of content without repetition, expectations of hard work, high values for mathematics by the curriculum and culture, and a common curriculum for all as aspects of mathematics instruction. The U.S. is taking a positive direction in its mathematics curriculum with the use of technology and reform while compulsory education is mandating that the theoretical depth of middle school curriculums in China be lowered for all of its students in grades 1–9.  相似文献   

18.
David Clarke  Merrilyn Goos  Will Morony 《ZDM》2007,39(5-6):475-490
This article reviews “problem solving” in mathematics in Australia and how it has evolved in recent years. In particular, problem solving is examined from the perspectives of research, curricula and instructional practice, and assessment. We identify three key themes underlying observed changes in the research agenda in Australia in relation to problem solving: Obliteration, Maturation and Generalisation. Within state mathematics curricula in Australia, changes in the language and construction of the curriculum and in related policy documents have subsumed problem solving within the broader category of Working Mathematically. In relation to assessment, research in Australia has demonstrated the need for alignment of curriculum, instruction and assessment, particularly in the case of complex performances such as mathematical problem solving. Within the category of Working Mathematically, recent Australian curriculum documents appear to accept an obligation to provide both standards for mathematical problem solving and student work samples that illustrate such complex performances and how they might be assessed.  相似文献   

19.
Kristina Reiss  Günter Törner 《ZDM》2007,39(5-6):431-441
In Germany, problem solving has important roots that date back at least to the beginning of the twentieth century. However, problem solving was not primarily an aspect of mathematics education but was particularly influenced by cognitive psychologists. Above all, the Gestalt psychology developed by researchers such as Köhler (Intelligenzprüfungen an Anthropoiden. Verlag der Königlichen Akademie des Wissens, Berlin, 1917; English translation: The mentality of apes. Harcourt, Brace, New York, 1925), Duncker (Zur Psychologie des produktiven Denkens. Springer, Berlin, 1935), Wertheimer (Productive thinking. Harper, New York, 1945), and Metzger (Schöpferische Freiheit. Waldemar Kramer, Frankfurt, 1962) made extensive use of mathematical problems in order to describe their specific problem-solving theories. However, this research had hardly any influence on mathematics education—neither as a scientific discipline nor as a foundation for mathematics instruction. In the German mathematics classroom, problem solving, which is according to Halmos (in Am Math Mon 87:519–524, 1980) the “heart of mathematics,” did not attract the interest it deserved as a genuine mathematical topic. There is some evidence that this situation may change. In the past few years, nationwide standards for school mathematics have been introduced in Germany. In these standards, problem solving is specifically addressed as a process-oriented standard that should be part of the mathematics classroom through all grades. This article provides an overview on problem solving in Germany with reference to psychology, mathematics, and mathematics education. It starts with a presentation of the historical roots but gives also insights into contemporary developments and the classroom practice.  相似文献   

20.
Verschaffel  Lieven  Schukajlow  Stanislaw  Star  Jon  Van Dooren  Wim 《ZDM》2020,52(1):1-16

Word problems are among the most difficult kinds of problems that mathematics learners encounter. Perhaps as a result, they have been the object of a tremendous amount research over the past 50 years. This opening article gives an overview of the research literature on word problem solving, by pointing to a number of major topics, questions, and debates that have dominated the field. After a short introduction, we begin with research that has conceived word problems primarily as problems of comprehension, and we describe the various ways in which this complex comprehension process has been conceived theoretically as well as the empirical evidence supporting different theoretical models. Next we review research that has focused on strategies for actually solving the word problem. Strengths and weaknesses of informal and formal solution strategies—at various levels of learners’ mathematical development (i.e., arithmetic, algebra)—are discussed. Fourth, we address research that thinks of word problems as exercises in complex problem solving, requiring the use of cognitive strategies (heuristics) as well as metacognitive (or self-regulatory) strategies. The fifth section concerns the role of graphical representations in word problem solving. The complex and sometimes surprising results of research on representations—both self-made and externally provided ones—are summarized and discussed. As in many other domains of mathematics learning, word problem solving performance has been shown to be significantly associated with a number of general cognitive resources such as working memory capacity and inhibitory skills. Research focusing on the role of these general cognitive resources is reviewed afterwards. The seventh section discusses research that analyzes the complex relationship between (traditional) word problems and (genuine) mathematical modeling tasks. Generally, this research points to the gap between the artificial word problems learners encounter in their mathematics lessons, on the one hand, and the authentic mathematical modeling situations with which they are confronted in real life, on the other hand. Finally, we review research on the impact of three important elements of the teaching/learning environment on the development of learners’ word problem solving competence: textbooks, software, and teachers. It is shown how each of these three environmental elements may support or hinder the development of learners’ word problem solving competence. With this general overview of international research on the various perspectives on this complex and fascinating kind of mathematical problem, we set the scene for the empirical contributions on word problems that appear in this special issue.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号