首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of [(μ-SCH2)2NPh]Fe2(CO)6 (A) with PPh3 or PPh2H in the presence of the decarbonylating agent Me3NO·2H2O afforded complexes [(μ-SCH2)2NPh]Fe2(CO)5(PPh3) (1) and [(μ-SCH2)2NPh]Fe2(CO)5(PPh2H) (2) in 87% and 74% yields, respectively. Complexes 1 and 2 were characterized by elemental analysis and various spectroscopic techniques. The molecular structures of 1 and 2 were further determined by X-ray crystallography. In both cases, the monophosphine ligand resides in an axial position of the square-pyramidal Fe atom and trans to the benzene ring of the azadithiolate ligand, in order to minimize steric repulsion. On the basis of electrochemical studies, all these complexes were found to catalyze proton reduction to H2 in the presence of acetic acid.  相似文献   

2.
The hydroxyl- and pyridyl-functionalized diiron azadithiolate complexes [{(μ-SCH2)2N(CH2CH2OH)}Fe2(CO)6] (1) and [{(μ-SCH2)2N(CH2CH2OOCPy)}Fe2(CO)6] (Py = pyridyl) (2) were prepared as biomimetic models of the active site of Fe-only hydrogenases. Both complexes were characterized by MS, IR, 1H NMR spectra and elemental analysis. The molecular structures of 1 and 2 were determined by single crystal X-ray analysis. A network is constructed by intermolecular H-bonds in the crystals of 1. An S?O intermolecular contact was found in the crystals of 2, which is scarcely found for organometallic complexes. Cyclic voltammograms of 1 and 2 were studied to evaluate their redox properties.  相似文献   

3.
Two N-functionally substituted diiron azadithiolate complexes, [(µ-SCH2)2NCH2CH2OC(O)C6H4I-p]Fe2(CO)6 (1) and {[(µ-SCH2)2NCH2CH2OC(O)C6H4I-p]Fe2(CO)5Ph2PCH}2 (2) as models for the active site of [FeFe] hydrogenases, have been prepared and fully characterized. Complex 1 was prepared by the reaction of [(µ-SCH2)2NCH2CH2OH]Fe2(CO)6 with p-iodobenzoic acid in the presence of 4-dimethylaminopyridine (DMAP) and N,N′-dicyclohexylcarbodiimide (DCC) in 78% yield. Further treatment of 1 with 1 equiv. of Me3NO?·?2H2O followed by 0.5 equiv. of trans-1,2-bis(diphenylphosphino)ethylene (dppe) affords 2 in 60% yield. The new complexes 1 and 2 were characterized by IR and 1H (13C, 31P) NMR spectroscopic techniques and their molecular structures were confirmed by X-ray diffraction analysis. The molecular structure of 1 has two conformational isomers, in one isomer its N-functional substituent is axial to its bridged nitrogen and in the other isomer its N-functional substituent is equatorial. The crystal structure of 2 revealed that its N-functional substituents are equatorial to its nitrogens and dppe occupies the two apical positions of the square-pyramidal irons.  相似文献   

4.
A series of N-functionalized diiron azadithiolate complexes, [(µ-SCH2)2NCH2CO2Me]Fe2(CO)5?L [L?=?CO (1); PPh3 (2); Ph2PCH2PPh2 (3)], as active site models of [FeFe]-hydrogenases has been prepared and characterized. While 1 was prepared by a sequential reaction of (µ-HS)2Fe2(CO)6 with two equiv. of aqueous HCHO, followed by treatment of (µ-HOCH2S)2Fe2(CO)6 with one equiv. of H2NCH2CO2Me in 46% yield; 2 and 3 were prepared by a carbonyl substitution reaction of 1 with PPh3 or Ph2PCH2PPh2 in the presence of Me3NO?·?2H2O in 90% and 85% yields, respectively. The crystal structures of 1 and 2 revealed that the substituent attached to the bridgehead nitrogen occupies an equatorial position and the PPh3 ligand resides in an axial position of the square pyramid of Fe2.  相似文献   

5.
Complex [[(mu-SCH2)2N(4-NO2C6H4)]Fe2(CO)6] (4) was prepared by the reaction of the dianionic intermediate [(mu-S)2Fe2(CO)6](2-) and N,N-bis(chloromethyl)-4-nitroaniline as a biomimetic model of the active site of Fe-only hydrogenase. The reduction of 4 by Pd-C/H2 under a neutral condition afforded complex [[(mu-SCH2)2N(4-NH2C6H4)]Fe2(CO)6] (5) in 67 % yield. Both complexes were characterized by IR, 1H and 13C NMR spectroscopy and MS spectrometry. The molecular structure of 4, as determined by X-ray analysis, has a butterfly 2Fe2S core and the aryl group on the bridged-N atom slants to the Fe(2) site. Cyclic voltammograms of 4 and 5 were studied to evaluate their redox properties. It was found that complex 4 catalyzed electrochemical proton reduction in the presence of acetic acid. A plausible mechanism of the electrocatalytic proton reduction is discussed.  相似文献   

6.
A tris(N-pyrrolidinyl)phosphine (P(NC4H8)3) monosubstituted complex, [(μ-pdt)Fe2(CO)5P(NC4H8)3] (2) was synthesized as a functional model of the hydrogen-producing capability of the iron hydrogenase active site. The structure was fully characterized by X-ray crystallography. IR and electrochemical studies have indicated that the P(NC4H8)3 ligand has better electron-donating ability than that of those phosphine ligands, such as PMe3, PTA (1,3,5-triaza-7-phosphaadamantane), PMe2Ph PPh3, and P(OEt)3. The electrocatalytic activity of 2 was recorded in CH3CN in the absence and presence of weak acid, HOAc. The cathodic shift of potential at −1.98 V and the dependence of current on acid concentration have indicated that complex 2 can catalyze the reduction of protons to hydrogen at its Fe0FeI level in the presence of HOAc. IR spectroelectrochemical experiments are conducted during the reduction of 2 under nitrogen and carbon monoxide, respectively. The formation of a bridging CO group during the reduction of 2 at −1.98 V has been identified using IR spectroelectrochemical techniques, and an electrocatalytic mechanism of 2 consistent with the spectroscopic and electrochemical results is proposed.  相似文献   

7.
Protonation of [{(mu-SCH2)2N(C6H4-p-NO2)}{Fe(CO)2(PMe3)}2] in the presence of 4 equiv. of HOTf afforded two species, a micro-hydride diiron complex, the molecular structure of which was crystallographically characterized, and a micro-S-protonated species, which was readily deprotonated in the presence of pyridine.  相似文献   

8.
Investigating the synthesis and properties of diiron azadithiolate complexes is one of the key topics for mimicking the active site of [FeFe]‐hydrogenases, which might be very useful for the design of new efficient catalysts for hydrogen production and the development of a future hydrogen economy. A series of new phosphine‐substituted diiron azadithiolate complexes as models for the active site of [FeFe]‐hydrogenases are described. A novel and efficient way was firstly established for the preparation of phosphine‐substituted diiron azadithiolate complexes. The reaction of Fe2(μ‐SH)2(CO)6 and phosphine ligands L affords the intermediate Fe2(μ‐SH)2(CO)5L ( A ). The intermediate reacts in situ with a premixed solution of paraformaldehyde and ammonium carbonate to produce the target phosphine‐substituted diiron azadithiolate complexes Fe2[(μ‐SCH2)2NH](CO)5L ( 1a – 1f ) (L = P(C6H4–4‐CH3)3, P(C6H4–3‐CH3)3, P(C6H4–4‐F)3, P(C6H4–3‐F)3, P(2‐C4H3O)3, PPh2(OCH2CH3)). Furthermore, reactions of the intermediate A with I‐4‐C6H4N(CH2Cl)2 in the presence of Et3N give the phosphine‐substituted diiron azadithiolate complexes Fe2[(μ‐SCH2)2NC6H4–4‐I](CO)5L ( 2a – 2e ) (L = P(C6H4–4‐CH3)3, P(C6H4–3‐CH3)3, P(C6H4–4‐F)3, P(C6H4–3‐F)3, P(2‐C4H3O)3). All the complexes were fully characterized using elemental analysis, IR and NMR spectroscopies and, particularly for 1a , 1c – 1e , 2a and 2c , single‐crystal X‐ray diffraction analysis. In addition, complexes 1a – 1f and 2a – 2e were found to be catalysts for H2 production under electrochemical conditions. Density functional theory calculations were performed for the reactions of Fe2(μ‐SH)2(CO)6 + P(C6H4–4‐CH3)3.  相似文献   

9.
As biomimetic models for the active site of Fe-only hydrogenases,six new N-substituted diiron azadithiolates (ADT) were prepared.Treatment of CH2Cl2 solutions of primary amines RNH2 with paraformaldehyde followed by an excess of SOCl2 gave N,N-bis(chloromethyl)amines RN(CH2Cl)2 (1,R = CH2CO2Et;2,C6H4C(O)Me-p;3,C6H4CO2Me-p;4,C6H4SCN-p) in 30-90% yields.Further treatment of the chloromethylated amines 1-4 with (μ-LiS)2Fe2(CO)6 in THF resulted in formation of the corresponding N-substituted ADT-type models [(μ-SCH2)2NR]Fe2(CO)6 (5,R = CH2CO2Et;6,C6H4C(O)Me-p;7,C6H4CO2Me-p;8,C6H4SCN-p) in 24-75% yields.Also prepared were the N-substituted models [(μ-SCH2)2NC(O)CH2C10H7-α]Fe2(CO)6 (9) and 1,4-[Fe2(CO)6(μ- SCH2)2NC(O)]2C6H4 (10) by reaction of CH2Cl2 solutions of [(μ-SCH2)2NH]Fe2(CO)6 with α-C10H7CH2COCl and 1,4-C6H4(COCl)2 in 81% and 28% yields, respectively. All the new compounds 1-10 were characterized by elemental analysis and spectroscopy, as well as for 5-7 and 9 by X-ray crystallography. The crystallographic studies indicated that the functionality of 5 attached to the bridged N atom lies in an equatorial position, whereas those of functionalities of 6, 7, and 9 are located in an axial position. This is presumably due to different electronic and steric effects between the N-substituted aliphatic and aromatic functionalities. More interestingly, model 7 has been found to be a catalyst for proton reduction in the presence of either strong acid CF3CO2H or weak acid HOAc under electrochemical conditions. In addition, two mechanisms ECCE and EECC are preliminarily suggested for such two electrocatalytic H2 production processes, respectively.  相似文献   

10.
The complex [{(mu-SCH2)2N(CH2C6H4-2-Br)}Fe2(CO)6] and its N-protonated species, as structural models of the Fe-only hydrogenase active site, were identified spectroscopically and crystallographically, and their molecular structures show the 0.04-0.1 A lengthening of the three N-C bonds and an intramolecular HBr contact (2.82 Angstroms) in the crystalline state of the N-protonated species.  相似文献   

11.
The model complexes 1-3 of functionalized azadithiolate (ADT)-bridged Fe-only hydrogenases, [Fe2(Co)6(μ-ADT)C6H4CCR] [R = C6H4NO2-4 (1), C6H5 (2), C6H4OCH3-4 (3)] have been synthesized in high yields under mild conditions by using Sonogashira reaction. Spectroscopic study and X-ray crystal structural analysis of 1 demonstrate that the model complexes retain the butterfly structure of 2Fe2S model analogues. The intermolecular C-H?O, C-H?π hydrogen bonding and π-π interactions play important roles in molecular packing of 1. In the presence of HOAc, complex 1 features the catalytic electrochemical proton reduction.  相似文献   

12.
Three N-substituted selenium-bridged diiron complexes [{(mu-SeCH2)2NC6H4R}Fe2(CO)6] (R = 4-NO2, 7; R = H, 8; R = 4-CH3, 9) were firstly prepared as biomimetic models for the Fe-Fe hydrogenases active site. Models could be generated by the convergent reaction of [(mu-HSe)2Fe2(CO)6] (6) with N,N-bis(hydroxymethyl)-4-nitroaniline (1), N,N-bis(hydroxymethyl)aniline (2), and N,N-bis(hydroxymethyl)-4-methylaniline (3) in 46-52% yields. All the new complexes were characterized by IR, 1H and 13C NMR and HRMS spectra and their molecular structures were determined by single-crystal X-ray analysis. The redox properties of and their dithiolate analogues [{(mu-SCH2)2NC6H4R}Fe2(CO)6] (R = 4-NO2, 7s; R = H, 8s; R = 4-CH3, 9s ) were evaluated by cyclic voltammograms. The electrochemical proton reduction by and were investigated in the presence of p-toluenesulfonic acid (HOTs) to evaluate the influence of changing the coordinating S atoms of the bridging ligands to Se atoms on the electrocatalytic activity for proton reduction.  相似文献   

13.
A series of new diiron azadithiolate (ADT) complexes (1-8), which could be regarded as the active site models of [FeFe]hydrogenases, have been synthesized starting from parent complex [(μ-SCH(2))(2)NCH(2)CH(2)OH]Fe(2)(CO)(6) (A). Treatment of A with ethyl malonyl chloride or malonyl dichloride in the presence of pyridine afforded the malonyl-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(6) (1) and [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (2). Further treatment of 1 and 2 with PPh(3) under different conditions produced the PPh(3)-substituted complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (3), [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(4)(PPh(3))(2) (4), and [Fe(2)(CO)(5)(PPh(3))(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (5). More interestingly, complexes 1-3 could react with C(60) in the presence of CBr(4) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) via Bingel-Hirsch reaction to give the C(60)-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(6) (6), [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)C(C(60)) (7), and [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (8). The new ADT-type models 1-8 were characterized by elemental analysis and spectroscopy, whereas 2-4 were further studied by X-ray crystallography and 6-8 investigated in detail by DFT methods.  相似文献   

14.
15.
《Comptes Rendus Chimie》2008,11(8):906-914
A novel unsymmetrically disubstituted propanedithiolate compound [Fe2(CO)42-dmpe)(μ-pdt)] (1) (pdt = SCH2CH2CH2S, dmpe = Me2PCH2CH2PMe2) was synthesized by treatment of [Fe2(CO)6(μ-pdt)] with dmpe in refluxing THF. Compound 1 was characterized by single-crystal X-ray diffraction analysis. Protonation of 1 with HBF4·Et2O in CH2Cl2 gave at room temperature the μ-hydrido derivative [Fe2(CO)42-dmpe)(μ-pdt)(μ-H)](BF4)] (2). At low temperature, 1H and 31P–{1H} NMR monitoring revealed the formation of a terminal hydride intermediate 3. Comparison of these results with those of a VT NMR study of the protonation of symmetrical compounds [Fe2(CO)4L2(μ-pdt)] [L = PMe3, P(OMe)3] suggests that in disubstituted bimetallic complexes [Fe2(CO)4L2(μ-pdt)], dissymmetry of the complex is required to observe terminal hydride species. Attempts to extend the series of chelate compounds [Fe2(CO)42-L2)(μ-pdt)] by using arphos (arphos = Ph2AsCH2CH2PPh2) were unsuccessful. Only mono- and disubstituted derivatives [Fe2(CO)6−n(Ph2AsCH2CH2PPh2)n(μ-pdt)] (n = 1, 4a; n = 2, 4b), featuring dangling arphos, were isolated under the same reaction conditions of formation of 1. Compound 4b was structurally characterized.  相似文献   

16.
17.
Hydrogenases catalyze the reversible oxidation of dihydrogen to protons and electrons. The structures of two Fe-only hydrogenases have been recently reported [Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853-1858. Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, E. C.; Fontecilla-Camps, J. C. Structure 1999, 7, 13-23], showing that the likely site of dihydrogen activation is the so-called [2Fe](H) cluster, where each Fe ion is coordinated by CO and CN(-) ligands and the two metals are bridged by a chelating S-X(3)-S ligand. Moreover, the presence of a water molecule coordinated to the distal Fe2 center suggested that the Fe2 atom could be a suitable site for binding and activation of H(2). In this contribution, we report a density functional theory investigation of the structural and electronic properties of complexes derived from the [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) species, which is related to the [2Fe](H) cluster observed in Fe-only hydrogenases. Our results show that the structure of the [2Fe](H) cluster observed in the enzyme does not correspond to a stable form of the isolated cluster, in the absence of the protein. As a consequence, the reactivity of [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) derivatives in solution may be expected to be quite different from that of the active site of Fe-only hydrogenases. In fact, the most favorable path for H(2) activation involves the two metal atoms and one of the bridging S atoms and is associated with a very low activation energy (5.3 kcal mol(-1)). The relevance of these observations for the catalytic properties of Fe-only hydrogenases is discussed in light of available experimental and theoretical data.  相似文献   

18.
Novel asymmetrically substituted azadithiolate compounds [Fe2(CO)4(kappa2-dppe){micro-SCH2N(R)CH2S}] (R=iPr, 1a; CH2CH2OCH3, 1b; CH2C6H5, 1c) have been synthesized by treatment of [Fe2(CO)6(micro-adt)] [adt=SCH2N(R)CH2S, with R=iPr, CH2CH2OCH3, CH2C6H5] with dppe (dppe=Ph2PCH2CH2PPh2) in refluxing toluene in the presence of Me3NO. 1a-c have been characterized by single-crystal X-ray diffraction analyses. The electrochemical investigation of 1a-c and of [Fe2(CO)4(kappa2-dppe)(micro-pdt)] (1d) [pdt=S(CH2)3S] in MeCN- and THF-[NBu4][PF6] has demonstrated that the electrochemical reduction of 1a-d gives rise to an Electron-transfer-catalyzed (ETC) isomerization to the symmetrical isomers 2a-d where the dppe ligand bridges the iron centers. Compounds 2a-d were characterized by IR and NMR spectroscopy, elemental analysis, and X-ray crystallography for 2a.  相似文献   

19.
Five monophosphine‐substituted diiron propane‐1,2‐dithiolate complexes as the active site models of [FeFe]‐hydrogenases have been synthesized and characterized. Reactions of complex [Fe2(CO)6{μ‐SCH2CH(CH3)S}] ( 1 ) with a monophosphine ligand tris(4‐methylphenyl)phosphine, diphenyl‐2‐pyridylphosphine, tris(4‐chlorophenyl)phosphine, triphenylphosphine, or tris(4‐fluorophenyl)phosphine in the presence of the oxidative agent Me3NO·2H2O gave the monophosphine‐substituted diiron complexes [Fe2(CO)5(L){μ‐SCH2CH(CH3)S}] [L = P(4‐C6H4CH3)3, 2 ; Ph2P(2‐C5H4N), 3 ; P(4‐C6H4Cl)3, 4 ; PPh3, 5 ; P(4‐C6H4F)3, 6 ] in 81%–94% yields. Complexes 2 – 6 have been characterized by elemental analysis, spectroscopy, and X‐ray crystallography. In addition, electrochemical studies revealed that these complexes can catalyze the reduction of protons to H2 in the presence of HOAc.  相似文献   

20.
《Comptes Rendus Chimie》2008,11(8):842-851
A few recent electrochemical studies of diiron models of the iron-only hydrogenases' active site are summarized. Emphasis is put on the reduction mechanisms of hexacarbonyl complexes and on the different mechanisms of proton reduction that may operate depending on the nature of the complex and the strength of the acid. An attempt is made to discuss the thermodynamic and kinetic limitations of proton reduction processes supported by these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号