首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Treatment of [N(n)Bu(4)][Os(VI)(N)Cl(4)] with a stoichiometric amount of H(2)L (L = N,N'-bis(salicylidene)-o-cyclohexylenediamine dianion) in the presence of PF(6)(-) or ClO(4)(-) in MeOH affords [Os(VI)(N)(L)(OH(2))](PF(6)) 1a and [Os(VI)(N)(L)(CH(3)OH)](ClO(4)) 1b, respectively. The structure of 1b has been determined by X-ray crystallography and the Os≡N bond distance is 1.627(3) ?. In the presence of a N-donor heterocyclic ligand in CH(3)CN, 1a reacts at room temperature to afford the mixed-valence μ-N(2) (salen)osmium species [(X)(L)Os(III)-N≡N-Os(II)(L)(X)](PF(6)), 2-14 (X = py 2; 4-Mepy 3; 4-(t)Bupy 4; pz 5; 3-Mepz 6; 3,5-Me(2)pz 7; Im 8; 1-MeIm 9; 2-MeIm 10; 4-MeIm 11; 1,2-Me(2)Im 12; 2-Meozl 13; 4-MeTz 14). These complexes are formed by ligand-induced N···N coupling of two [Os(VI)≡N](+) to give initially [Os(III)-N(2)-Os(III)](2+), which is then reduced to give the more stable mixed-valence species [Os(III)-N(2)-Os(II)](+). Cyclic voltammograms (CVs) of 2-14 show two reversible couples, attributed to Os(III,III)/Os(III,II) and Os(III,II)/Os(II,II). The large comproportionation constants (K(com)) of (5.36-82.3) × 10(13) indicate charge delocalization in these complexes. The structures of 3 and 14 have been determined by X-ray crystallography, the salen ligands are in uncommon cis-β configuration. Oxidations of 4 and 14 by [Cp(2)Fe](PF(6)) afford the symmetrical species [(X)(L)Os(III)-N≡N-Os(III)(L)(X)](PF(6))(2) (X = 4-(t)Bupy 15; 4-MeTz 16). These are the first stable μ-N(2) diosmium(III,III) complexes that have been characterized by X-ray crystallography.  相似文献   

2.
It is shown that the water-soluble dicarboxylic cationic acid [(eta5-C5H4COOH)2Co(III)]+ (1) is an extremely versatile building block for the construction of organometallic crystalline edifices. Removal of one proton from 1 leads to formation of the neutral zwitterion [(eta5-C5H4COOH)(eta5-C5H4COO)Co(III)] (2), while further deprotonation leads to formation of the dicarboxylate monoanion [(eta5-C5H4COO)2Co(III)]- (3). Compounds 1. 2 and 3 possess different hydrogen-bonding capacity and participate in a variety of hydrogen-bonding networks. The cationic form 1 has been characterised as its [PF6]- and Cl- salts 1-[PF6] and 1-Cl.H2O, as well as in its co-crystal with urea, 1-Cl.3(NH2)2CO, and with the zwitterionic form 2, [(eta5-CH4COOH)(eta5-C5H4COO)Co(III)][(eta5-C5H4COOH)2Co(III)]+[PF6]-, 2.1-[PF6]. The neutral zwitterion 2 behaves as a supramolecular crown ether: it encapsulates the alkali cations K+, Rb+ and Cs+ as well as the ammonium cation NH4+ in cages sustained by O-H...O and C-H...O hydrogen bonds to form co-crystalline salts of the type 2(2)-M[PF6] (M = K, Rb, Cs) and 2(2)-[NH4][PF6]. The deprotonated acid 3 has been characterised as its Cs+ salt, Cs+-3.3H2O.  相似文献   

3.
Aerobic reactions of Co(O(2)CMe)(2).4H(2)O with di-2-pyridyl ketone oxime (Hpko) in the presence of counterions (ClO(4)(-), PF(6-)) give the tetranuclear, mixed-valence cobalt(II/III) clusters [Co(II)(2)Co(III)(2)(OR)(2)(O(2)CMe)(2)(pko)(4)S(2)]X(2) [R = H, S = MeOH, X = ClO(4) (1); R = Me, S = EtOH, X = PF(6) (2)] depending on the solvent mixture. Complexes 1 and 2 are the first Co members in the family of metallacrowns adopting the extremely rare inverse 12-metallacrown-4 motif.  相似文献   

4.
The reactions of [Ag(NH=CMe2)2]ClO4 with cis-[PtCl2L2] in a 1:1 molar ratio give cis-[PtCl(NH=CMe2)(PPh3)2]ClO4 (1cis) or cis-[PtCl(NH=CMe2)2(dmso)]ClO4 (2), and in 2:1 molar ratio, they produce [Pt(NH=CMe2)2L2](ClO4)2 [L = PPh3 (3), L2= tbbpy = 4,4'-di-tert-butyl-2,2'-dipyridyl (4)]. Complex 2 reacts with PPh3 (1:2) to give trans-[PtCl(NH=CMe2)(PPh3)2]ClO(4) (1trans). The two-step reaction of cis-[PtCl2(dmso)2], [Au(NH=CMe2)(PPh3)]ClO4, and PPh3 (1:1:1) gives [SP-4-3]-[PtCl(NH=CMe2)(dmso)(PPh3)]ClO4 (5). The reactions of complexes 2 and 4 with PhICl2 give the Pt(IV) derivatives [OC-6-13]-[PtCl3(NH=CMe2)(2)(dmso)]ClO4 (6) and [OC-6-13]-[PtCl2(NH=CMe2)2(dtbbpy)](ClO4)2 (7), respectively. Complexes 1cis and 1trans react with NaH and [AuCl(PPh3)] (1:10:1.2) to give cis- and trans-[PtCl{mu-N(AuPPh3)=CMe2}(PPh3)2]ClO4 (8cis and 8trans), respectively. The crystal structures of 4.0.5Et2O.0.5Me2CO and 6 have been determined; both exhibit pseudosymmetry.  相似文献   

5.
The preparation of a number of binuclear (salen)osmium phosphinidine and phosphiniminato complexes using various strategies are described. Treatment of [Os(VI)(N)(L(1))(sol)](X) (sol = H(2)O or MeOH) with PPh(3) affords an osmium(IV) phosphinidine complex [Os(IV){N(H)PPh(3)}(L(1))(OMe)](X) (X = PF(6)1a, ClO(4)1b). If the reaction is carried out in CH(2)Cl(2) in the presence of excess pyrazine the osmium(III) phosphinidine species [Os(III){N(H)PPh(3)}(L(1))(pz)](PF(6)) 2 can be generated. On the other hand, if the reaction is carried out in CH(2)Cl(2) in the presence of a small amount of H(2)O, a μ-oxo osmium(IV) phosphinidine complex is obtained, [(L(1)){PPh(3)N(H)}Os(IV)-O-Os(IV){N(H)PPh(3)}(L(1))](PF(6))(2)3. Furthermore, if the reaction of [Os(VI)(N)(L(1))(OH(2))]PF(6) with PPh(3) is done in the presence of 2, the μ-pyrazine species, [(L(1)){PPh(3)N(H)}Os(III)-pz-Os(III){N(H)PPh(3)}(L(1))](PF(6))(2)4 can be isolated. Novel binuclear osmium(IV) complexes can be prepared by the use of a diphosphine ligand to attack two Os(VI)≡N. Reaction of [Os(VI)(N)(L(1))(OH(2))](PF(6)) with PPh(2)-C≡C-PPh(2) or PPh(2)-(CH(2))(3)-PPh(2) in MeOH affords the binuclear complexes [(MeO)(L(1))Os(IV){N(H)PPh(2)-R-PPh(2)N(H)}Os(IV)(L(1))(OMe)](PF(6))(2) (R = C≡C 5, (CH(2))(3)6). Reaction of [Os(VI)(N)(L(2))Cl] with PPh(2)FcPPh(2) generates a novel trimetallic complex, [Cl(L(2))Os(IV){NPPh(2)-Fc-PPh(2)N}Os(IV)(L(2))Cl] 7. The structures of 1b, 2, 3, 4, 5 and 7 have been determined by X-ray crystallography.  相似文献   

6.
The symmetrically ligated complexes 1, 2, and 3 with a (mu-oxo)bis(mu-acetato)diferric core can be one-electron oxidized electrochemically or chemically with aminyl radical cations [*NR3][SbCl6] in acetonitrile yielding complexes which contain the mixed-valent [(mu-oxo)bis(mu-acetato)iron(IV)iron(III)]3+ core: [([9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](ClO4)2 (1(ClO4)2), [(Me3[9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](PF6)2 (2(PF6)(2)), and [(tpb)(2FeIII2)(mu-O)(mu-CH3CO2)2] (3) where ([9]aneN3) is the neutral triamine 1,4,7-triazacyclononane and (Me3[9]aneN3) is its tris-N-methylated derivative, and (tpb)(-) is the monoanion trispyrazolylborate. The asymmetrically ligated complex [(Me3[9]aneN3)FeIII(mu-O)(mu-CH3CO2)2FeIII(tpb)](PF6) (4(PF6)) and its one-electron oxidized form [4ox]2+ have also been prepared. Finally, the known heterodinuclear species [(Me3[9]aneN3)CrIII(mu-O)(mu-CH3CO2)2Fe([9]aneN3)](PF6)2 (5(PF6)(2)) can also be one-electron oxidized yielding [5ox]3+ containing an iron(IV) ion. The structure of 4(PF6).0.5CH3CN.0.25(C2H5)2O has been determined by X-ray crystallography and that of [5ox]2+ by Fe K-edge EXAFS-spectroscopy (Fe(IV)-O(oxo): 1.69(1) A; Fe(IV)-O(carboxylato) 1.93(3) A, Fe(IV)-N 2.00(2) A) contrasting the data for 5 (Fe(III)-O(oxo) 1.80 A; Fe(III)-O(carboxylato) 2.05 A, Fe-N 2.20 A). [5ox]2+ has an St = 1/2 ground state whereas all complexes containing the mixed-valent [FeIV(mu-O)(mu-CH3CO2)2FeIII]3+ core have an St = 3/2 ground state. M?ssbauer spectra of the oxidized forms of complexes clearly show the presence of low spin FeIV ions (isomer shift approximately 0.02 mm s(-1), quadrupole splitting approximately 1.4 mm s(-1) at 80 K), whereas the high spin FeIII ion exhibits delta approximately 0.46 mm s(-1) and DeltaE(Q) approximately 0.5 mm s(-1). M?ssbauer, EPR spectral and structural parameters have been calculated by density functional theoretical methods at the BP86 and B3LYP levels. The exchange coupling constant, J, for diiron complexes with the mixed-valent FeIV-FeIII core (H = -2J S1.S2; S(1) = 5/2; S2 = 1) has been calculated to be -88 cm(-1) (intramolecular antiferromagnetic coupling) and for the reduced diferric form of -75 cm(-1) in reasonable agreement with experiment (J = -120 cm(-1)).  相似文献   

7.
Chen W  Liu F  Xu D  Matsumoto K  Kishi S  Kato M 《Inorganic chemistry》2006,45(14):5552-5560
The neutral square-planar complexes [Pt(RNH2)2(NHCO(t)Bu)2] (R = H, 1; Et, 2) and [Pt(DACH)(NHCO(t)Bu)2] (DACH = 1,2-diaminocyclohexane, 3) act as metalloligands and make bonds to closed-shell Tl(I) ions to afford one- and two-dimensional platinum-thallium oligomers or polymers based on heterobimetallic backbones. A series of heteronuclear platinum(II)-thallium(I) complexes have been synthesized and structurally characterized. The structures of the Pt-Tl compounds resulted from [Pt(RNH2)2(NHCO(t)Bu)2] and TlX [X = NO3(-), ClO4(-), PF6(-), and Cp2Fe(CO2)2(2-)] are dependent on both counteranions and the amine substituents. The compounds [Pt(NH3)2(NHCO(t)Bu)2Tl]X (X = NO3(-), 8; ClO4(-), 9) adopt one-dimensional zigzag chain structures consisting of repeatedly stacked [Pt(NH3)2(NHCO(t)Bu)2Tl]+ units, whereas [{Pt(NH3)2(NHCO(t)Bu)2}2Tl2]X2 (X = PF6(-), 10) consists of a helical chain. Compound 3 reacts with Tl+ to give [{Pt(DACH)(NHCO(t)Bu)2}2Tl](NO3) x [Pt(DACH)(NHCO(t)Bu)2] x 3 H2O (14) and one-dimensional polymeric [{Pt(DACH)(NHCO(t)Bu)2}2Tl2]X2 (X = ClO4(-), 15; PF6(-), 16). Reactions of [Pt(DACH)(NHCOCH3)2] with Tl+ ions afford one-dimensional coordination polymers [{Pt(DACH)(NHCOCH3)2}2Tl2]X2 (X = NO3(-), 17; ClO4(-), 18; PF6(-), 19). The polymeric [{Pt(DACH)(NHCOR')2}2Tl2]2+ (R = CH3, (t)Bu) complexes adopt helical structures, which are generated around the crystallographic 2(1) screw axis. The distance between the coils corresponds to the unit cell length, which ranges from 22.58 to 22.68 A. The platinum-thallium bond distances fall in a narrow range around 3.0 A. The complexes derived from [Pt(NH3)2(NHCO(t)Bu)2] are luminescent at 77 K. The trinuclear complexes [{Pt(RNH2)(NHCO(t)Bu)2}2Tl]+ do not emit at room temperature but are emissive at 77 K, whereas the polymeric platinum-thallium complexes containing 1,2-diaminocyclohexane are intensively luminescent at both room temperature and 77 K. The color variations are interesting; 15 exhibits intense yellow-green, 16 exhibits green, and 17-19 exhibit blue luminescence. The presence of bonding between platinum and thallium is supported by the short metal-metal separations and the strong low-energy luminescence of these compounds in their solid states.  相似文献   

8.
Reactions of the preformed cluster [(η(5)-C(5)Me(5))(2)Mo(2)(μ(3)-S)(4)Cu(2)(MeCN)(2)](ClO(4))(2) (1) with two tetraphosphine ligands, 1,4-N,N,N',N'-tetra(diphenylphosphanylmethyl)benzene diamine (dpppda) and N,N,N',N'-tetra(diphenylphosphanylmethyl)ethylene diamine (dppeda), produced two bicyclic clusters {[(η(5)-C(5)Me(5))(2)Mo(2)(μ(3)-S)(4)Cu(2)](2)(L)}(ClO(4))(4) (3: L = dpppda; 4: L = dppeda). Analogous reactions of 1 or [(η(5)-C(5)Me(5))(2)Mo(2)(μ(3)-S)(4)Cu(2)(MeCN)(2)](PF(6))(2) (2) with two N,P mixed ligands, N,N-bi(diphenylphosphanylmethyl)-2-aminopyridine (bdppmapy) and N-diphenylphosphanylmethyl-4-aminopyridine (dppmapy), afforded two monocyclic clusters {[(η(5)-C(5)Me(5))(2)Mo(2)(μ(3)-S)(4)Cu(2)](2)(L)(2)}X(4) (5: L = bdppmapy, X = ClO(4); 6: L = dppmapy, X = PF(6)). Compounds 3-6 were fully characterized by elemental analysis, IR spectra, UV-vis spectra, (1)H and (31)P{(1)H} NMR spectra, ESI-MS and single-crystal X-ray crystallography. In the tetracations of 3-6, two cubane-like [Mo(2)(μ(3)-S)(4)Cu(2)] cores are linked either by one dpppda or dppeda bridge to form a bicyclic structure or by a pair of bdppmapy or dppmapy bridges to afford a monocyclic structure. The third-order nonlinear optical (NLO) properties of 1 and 3-6 in MeCN were also investigated by femtosecond degenerate four-wave mixing (DFWM) technique with a 50 fs pulse width at 800 nm. Compounds 3-6 exhibited enhanced third-order NLO performances relative to that of 1.  相似文献   

9.
Studies on the subtle effects and roles of polyatomic anions in the self-assembly of a series of AgX complexes with 2,4'-Py(2)S (X(-) = NO(3)(-), BF(4)(-), ClO(4)(-), PF(6)(-), CF(3)CO(2)(-), and CF(3)SO(3)(-); 2,4'-Py(2)S = 2,4'-thiobis(pyridine)) have been carried out. The formation of products appears to be primarily associated with a suitable combination of the skewed conformers of 2,4'-Py(2)S and a variety of coordination geometries of Ag(I) ions. The molecular construction via self-assembly is delicately dependent upon the nature of the anions. Coordinating anions afford the 1:1 adducts [Ag(2,4'-Py(2)S)X] (X(-) = NO(3)(-) and CF(3)CO(2)(-)), whereas noncoordinating anions form the 3:4 adducts [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = ClO(4)(-) and PF(6)(-)). Each structure seems to be constructed by competition between pi-pi interactions of 2,4'-Py(2)S spacers vs Ag.X interactions. For ClO(4)(-) and PF(6)(-), an anion-free network consisting of linear Ag(I) and trigonal Ag(I) in a 1:2 ratio has been obtained whereas, for the coordinating anions NO(3)(-) and CF(3)CO(2)(-), an anion-bridged helix sheet and an anion-bridged cyclic dimer chain, respectively, have been assembled. For a moderately coordinating anion, CF(3)SO(3)(-), the 3:4 adduct [Ag(3)(2,4'-Py(2)S)(4)](CF(3)SO(3))(3) has been obtained similarly to the noncoordinating anions, but its structure is a double strand via both face-to-face (pi-pi) stackings and Ag.Ag interactions, in contrast to the noncoordinating anions. The anion exchanges of [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = BF(4)(-), ClO(4)(-), and PF(6)(-)) with BF(4)(-), ClO(4)(-), and PF(6)(-) in aqueous media indicate that a [BF(4)(-)] analogue is isostructural with [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = ClO(4)(-) and PF(6)(-)). Furthermore, the anion exchangeability for the noncoordinating anion compounds and the X-ray data for the coordinating anion compounds establish the coordinating order to be NO(3)(-) > CF(3)CO(2)(-) > CF(3)SO(3)(-) > PF(6)(-) > ClO(4)(-) > BF(4)(-).  相似文献   

10.
MeNH(2) reacts with silver salts AgX (2:1) to give [Ag(NH(2)Me)(2)]X [X = TfO = CF(3)SO(3) (1.TfO) and ClO(4) (1.ClO(4))]. Neutral mono(amino) Rh(III) complexes [Rh(Cp*)Cl(2)(NH(2)R)] [R = Me (2a), To = C(6)H(4)Me-4 (2b)] have been prepared by reacting [Rh(Cp*)Cl(mu-Cl)](2) with RNH(2) (1:2). The following cationic methyl amino complexes have also been prepared: [Rh(Cp*)Cl(NH(2)Me)(PPh(3))]TfO (3.TfO), from [Rh(Cp*)Cl(2)(PPh(3))] and 1.TfO (1:1); [Rh(Cp*)Cl(NH(2)R)2]X, where R = Me, X = Cl, (4a.Cl), from [Rh(Cp*)Cl(mu-Cl)]2 and MeNH2 (1:4), or R = Me, X = ClO4 (4a.ClO4), from 4a.Cl and NaClO4 (1:4.8), or R = To, X = TfO (4b.TfO), from [Rh(Cp*)Cl(mu-Cl)](2), ToNH(2) and TlTfO (1:4:2); [Rh(Cp*)(NH(2)Me)(tBubpy)](TfO)(2) (tBubpy = 4,4'-di-tert-butyl-2,2'-bipyridine, 5.TfO), from 2a, TlTfO and tBubpy (1:2:1); [Rh(Cp*)(NH(2)Me)(3)](TfO)2 (6.TfO) from [Rh(Cp*)Cl(mu-Cl)](2) and 1.TfO (1:4). 2-6 constitute the first family of methyl amino complexes of rhodium. 1 and 4a.ClO(4) react with acetone to give, respectively, the methyl imino complexes [Ag{N(Me)=CMe(2)}()]X [X = TfO (7.TfO), ClO(4) (7.ClO(4))], and [Rh(Cp*)Cl(Me-imam)]ClO(4) [8.ClO(4), Me-imam = N,N'-N(Me)=C(Me)CH(2)C(Me)(2)NHMe]. 7.X (X = TfO, ClO(4)) are new members of the small family of methyl acetimino complexes of any metal whereas 8.ClO4 results after a double acetone condensation to give the corresponding bis(methyl acetimino) complex and an aldol-like condensation of the two imino ligands. The acetimino complex [Ag(NH=CMe(2))(2)]ClO(4) reacts with [Rh(Cp*)Cl(imam)]ClO(4) [1:1, imam = N,N'-NH=C(Me)CH(2)C(Me)(2)NH(2)] to give [Rh(Cp*)(imam)(NH=CMe(2))](ClO(4))(2) (9a.ClO(4)). 8.ClO(4) reacts with AgClO(4) (1:1) in MeCN to give [Rh(Cp*)(Me-imam)(NCMe)](ClO(4))2 (9b.ClO(4)), which in turn reacts with XyNC (Xy = C(6)H(3)Me(2)-2,6) or with MeNH(2) (1:1) to give [Rh(Cp*)(Me-imam)L](ClO(4))(2) [L = XyNC (9c.ClO(4)), MeNH(2) (9d.ClO(4))]. 6.TfO reacts with acetophenone to give [Rh(Cp*){C,N-C(6)H(4)C(Me)=N(Me)-2}(NH(2)Me)]TfO (10a.TfO), the first complex resulting from such a condensation and cyclometalation reaction. In turn, 10a.TfO reacts with isocyanides RNC (1:1) at room temperature to give [Rh(Cp*){C,N-C(6)H(4)C(Me)=NMe-2}(CNR)]TfO [R = tBu (10b.TfO), Xy (10c.TfO)], or 1:12 at 60 degrees C to give [Rh(Cp*){C,N-C(=NXy)C(6)H(4)C(Me)=N(Me)-2}(CNXy)]TfO (11.TfO). The crystal structures of 9a.ClO(4).acetone-d6, 9c.ClO(4), and 10a.TfO have been determined.  相似文献   

11.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

12.
Protonation of [{(mu-SCH2)2N(C6H4-p-NO2)}{Fe(CO)2(PMe3)}2] in the presence of 4 equiv. of HOTf afforded two species, a micro-hydride diiron complex, the molecular structure of which was crystallographically characterized, and a micro-S-protonated species, which was readily deprotonated in the presence of pyridine.  相似文献   

13.
The crystal structures of [Co 2L(Cl)](ClO 4) 3 ( 1), [Co 2L(Br)](ClO 4) 3 ( 2), [Co 2L(OH)(OH 2)]I 3 ( 3), and [Co 2L (1)(Cl)](ClO 4) 3 ( 4), the density functional theory calculations, as well as the binding constants of [Co 2L] (4+) toward Cl (-) and Br (-) and of [Co 2L (1)] (4+) toward Cl (-), are reported in this paper (L = N[(CH 2) 2NHCH 2(C 6H 4- p)CH 2NH(CH 2) 2] 3N, L (1) = N[(CH 2) 2NHCH 2(C 6H 4- m)CH 2NH(CH 2) 2] 3N). The rigid dicobalt(II) cryptate [Co 2L] (4+) shows the recognition of Cl (-) and Br (-) but not of F (-) and I (-), because of the size matching to its rigid cavity. We also found that the relative rigid tripodal skeleton of L than that of L (1) results in the higher affinity of [Co 2L] (4+) toward Cl (-). Magnetic susceptibility measurements of 1 and 2 indicate that the two Co(II) atoms in the cryptates are antiferromagnetically coupled through the Cl (-)/Br (-) bridge, with g = 2.19, J = -13.7 cm (-1) for 1, and g = 2.22, J = -17.1 cm (-1) for 2.  相似文献   

14.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

15.
A mixture of cyclic gold(I) complexes [Au(2)(μ-cis-dppen)(2)]X(2) (X = OTf 1, PF(6)3) and [Au(cis-dppen)(2)]X (X = OTf 2, PF(6)4) is obtained from the reaction of [Au(tht)(2)]X (tht = tetrahydrothiophene) with one equivalent of cis-dppen [dppen = 1,2-bis(diphenylphosphino)ethylene]. The analogous reaction with trans-dppen or dppa [dppa = bis(diphenylphosphino)acetylene] affords the cyclic trinuclear [Au(3)(μ-trans-dppen)(3)]X(3) (X = OTf 11, PF(6)12) and tetranuclear [Au(4)(μ-dppa)(4)]X(4) (X = OTf 13, PF(6)14, ClO(4)15) gold complexes, respectively. Recrystallization of 15 from CH(2)Cl(2)/MeOH yielded a crystal of the octanuclear gold cluster [Au(8)Cl(2)(μ-dppa)(4)](ClO(4))(2)16. Attempts to prepare dicationic binuclear gold(II) species from the reaction of a mixture of 3 and 4 with halogens gave a mixture of products, the components of which confirmed to be acyclic binuclear gold(I) [Au(2)X(2)(cis-dppen)] (X = I 5, Br 7) and cyclic mononuclear gold(III) [AuX(2)(cis-dppen)]PF(6) (X = I 6, Br 8) complexes. Complexes 11-14 reveal weak emission in butyronitrile glass at 77 K, but they are non-emissive at room temperature. Ab initio modelling was performed to determine the charge state of the gold atoms involved. Extensive structural comparisons were made to experimental data to benchmark these calculations and rationalize the conformations.  相似文献   

16.
A comprehensive study of the structural and spectroscopic properties of two-, three-, and four-coordinate copper(I) complexes with aliphatic phosphine ligands is presented. All complexes described in this work are characterized by X-ray crystallography. The intramolecular Cu...Cu separations in [Cu2(dcpm)2]X2, [Cu2(dcpm)2-(CH3CN)2]X2, and [Cu2(dmpm)3]-(ClO4)2 (dcpm=bis(dicyclohexylphosphino)methane; dmpm=bis(dimethylphosphino)methane; X=ClO4- and PF6-) are in the range 2.639(2)-3.021(2) A. The anion...CuI interaction is weak, as evidenced by the nearest O...Cu separation of 2.558(6) A in [Cu2(dcpm)2](ClO4)2 and the closest Cu...F separation of 2.79(1) A in [Cu2(dcpm)2](PF6)2. The absorption bands of [Cu2(dcpm)2]X2 and [Cu2(dcpm)2(CH3CN)2]X2 (X=ClO4- and PF6-) at lambda max 307-311 nm in CH2Cl2 are assigned as 1[3d sigma* --> 4p sigma] transitions; this has been confirmed by resonance Raman spectroscopy. The triplet emissions in the visible region from these complexes exhibit long lifetimes and are sensitive to the environment. The lowest emissive excited state is tentatively ascribed as 3[(dx2-y2, dxy)(pz)] in nature. For [Cu2(dcpm)2]2+ salts in CH3CN, the emissive species is postulated to be [Cu2(dcpm)2(CH3CN)n]2+ (n > or = 3). Efficient photocatalytic reduction of MV2+ (4,4'-dimethyl-2,2'-bipyridinium) to MV+ in alcoholic solutions by using [Cu2(dcpm)2](PF6)2 or [Cu2(dppm)2(CH3CN)4](ClO4)2 (dppm=bis(diphenylphosphino)methane) as a catalyst has been observed. The addition of CH3CN or use of [Cu2(dmpm)3]-(ClO4)2 as a catalyst did not allow photocatalytic reduction processes to occur.  相似文献   

17.
Fang C  Liu QK  Ma JP  Dong YB 《Inorganic chemistry》2012,51(7):3923-3925
Three independent 1D metal-organic nanotubes AgL(2)X(2) [X = PF(6)(-) (1), ClO(4)(-) (2), and SbF(6)(-) (3)] with anion exchange, separation, and anion-responsive photoluminescence are reported.  相似文献   

18.
The reactions of bidentate diimine ligands (L2) with cationic bis(diimine)[Ru(L)(L1)(CO)Cl]+ complexes (L, L1, L2 are dissimilar diimine ligands), in the presence of trimethylamine-N-oxide (Me3NO) as a decarbonylation reagent, lead to the formation of heteroleptic tris(diimine) ruthenium(II) complexes, [Ru(L)(L1)(L2)]2+. Typically isolated as hexafluorophosphate or perchlorate salts, these complexes were characterised by UV-visible, infrared and mass spectroscopy, cyclic voltammetry, microanalyses and NMR spectroscopy. Single crystal X-ray studies have elucidated the structures of K[Ru(bpy)(phen)(4,4'-Me(2)bpy)](PF(6))(3).1/2H(2)O, [Ru(bpy)(5,6-Me(2)phen)(Hdpa)](ClO(4))(2), [Ru(bpy)(phen)(5,6-Me(2)phen)](ClO(4))(2), [Ru(bpy)(5,6'-Me(2)phen)(4,4'-Me(2)bpy)](PF(6))(2).EtOH, [Ru(4,4'-Me(2)bpy)(phen)(Hdpa)](PF(6))(2).MeOH and [Ru(bpy)(4,4'-Me(2)bpy)(Hdpa)](ClO(4))(2).1/2Hdpa (where Hdpa is di(2-pyridyl)amine). A novel feature of the first complex is the presence of a dinuclear anionic adduct, [K(2)(PF(6))(6)](4-), in which the two potassium centres are bridged by two fluorides from different hexafluorophosphate ions forming a K(2)F(2) bridging unit and by two KFPFK bridging moieties.  相似文献   

19.
The synthesis and physical characterization of oxo-bridged [Cr(2)(tmpa)(2)(&mgr;-O)(X)](n)()(+) complexes (tmpa = tris(2-pyridylmethyl)amine) containing a variety of complementary ligands (X = CO(3)(2)(-), PhPO(4)(2)(-), HS(-)) are described, with the objective of understanding factors underlying variations in the antiferromagnetic coupling constant J. We also present the crystal structure of [(tmpa)Cr(&mgr;-O)(&mgr;-CO(3))Cr(tmpa)](ClO(4))(2).2H(2)O, for comparison with previous findings on [(tmpa)Cr(&mgr;-O)(&mgr;-CH(3)CO(2))Cr(tmpa)](ClO(4))(3). The carbonate-bridged complex crystallizes in the monoclinic space group P2(1)/c with a = 11.286(10) ?, b = 18.12(2) ?, c = 20.592(12) ?, beta = 95.99(5) degrees, and V = 4190 ?(3) and Z = 4. Asymmetric tmpa ligation pertains, with apical N atoms situated trans to bridging oxo and acido O atoms. Key structural parameters include Cr-O(b) bond lengths of 1.818(6) and 1.838(6) ?, Cr-OCO(2) distances of 1.924(7) and 1.934(7) ?, and a bridging bond angle of 128.3(3) degrees. Several attempts to prepare oxo, amido-bridged dimers were unsuccessful, but the nearlinear [Cr(tmpa)(N(CN)(2))](2)O(ClO(4))(2).3H(2)O complex was isolated from the reaction of dicyanamide ion with [Cr(tmpa)(OH)](2)(4+). In contrast to the behavior of analogous diiron(III) complexes, antiferromagnetic coupling constants of [Cr(2)(tmpa)(2)(&mgr;-O)(X)](n)()(+) dinuclear species are highly responsive to the X group. Considering the complexes with X = CO(3)(2)(-), PhPO(4)(2)(-), HS(-), SO(4)(2)(-), and RCO(2)(-) (10 R substituents), we find a reasonably linear, empirical relationship between J and oxo bridge basicity, as measured by pK(a) (Cr(OH)Cr) values in aqueous solution. While there is no theoretical basis for such a correlation between solid-state and solution-phase properties, this relationship demonstrates that CrOCr pi-bonding contributes significantly to antiferromagnetic exchange. Thus, J tends to become less negative with increasing &mgr;-O(2)(-) basicity, showing that greater availability of a bridging oxo group lone pair toward the proton, with decreasing CrOCr pi-interaction, reduces the singlet-triplet gap.  相似文献   

20.
The heteroatom-substituted imido complexes [(LAu)3(mu-NX)]+ (X = NR2, R = Ph, Me, Bz; X = OH, Cl; L = a phosphine) have been prepared from the reactions of NH2X with [(LAu)3(mu-O)]+. Thermally unstable [(LAu)3(mu-NNMe2)]+ (L = P(p-XC6H4)3, X = H, F, Me, Cl, MeO) decompose to the gold cluster [LAu]6(2+) and tetramethyltetrazene Me2NN=NNMe2. The decomposition is first-order overall with a rate constant that increases with increasing pKa of the phosphine ligand. Activation parameters for the decomposition are deltaH(not equal to) = 99(4) kJ/mol and deltaS(not equal to) = 18.5(5) J/K.mol for L = PPh3 and deltaH(not equal to) = 78(3) kJ/mol and deltaS(not equal to) = -47(2) J/K.mol for L = P(p-MeOC6H4)3. The decomposition of analogous [(LAu)3(mu-NNBz2)]+ produces bibenzyl, indicative of the release of free amino nitrene Bz2NN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号