首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and effective method, using calcium nitrate and triammonium phosphate as starting materials, for the preparation of water-dispersible hydroxyapatite nanorods (HAp) was reported. The process primarily involves the preparation of HAp with the addition of sodium citrate (NaC) and the exchange of absorbed ions (NaC) with sodium hexame taphosphate (NaP). The end products were investigated using various means in order to confirm the particles’ crystal phase and morphology and to understand how to improve their stability. The results demonstrate that the resulting HAp at 90 °C is rod-like with length of 300-400 nm and width of 40-60 nm. The zeta potential values of pure HAp, HAp-NaC, HAp-NaC/NaP are from −15.20, −30.89 to −44.84 mV. The settling time test shows the HAp-NaC/NaP could keep stable above 7 months without any creaming or visible sedimentation. The amount of NaC and the reaction temperature play significant roles in the whole process due to the formation of Ca containing precipitates.  相似文献   

2.
Triclinic LiVPO4F/C composite materials were prepared from a sucrose-containing precursor by one-step heat treatment. As-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements. XRD studies showed that Li3PO4 impurity phase appeared in the sample synthesized at 600 °C and pure LiVPO4F samples could be obtained when the sintered temperature was higher than 650 °C. The sample synthesized at 650 °C presents the highest initial discharge capacity of 132 mAh g−1 at 0.2 C rate, and exhibited better cycling stability (124 mAh g−1 at 50th cycle at 0.2 C rate) and better rate capability (100 mAh g−1 at 50th cycle under 1 C rate) in the voltage range 3.0-4.4 V.  相似文献   

3.
The electrodeposition of metallic cobalt from a 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid was investigated. The electrochemical behavior of Co(II) in the ionic liquid on a platinum working electrode at 60 °C was studied by cyclic voltammetry and chronoamperometry. The results from the cyclic voltammetry showed that the electrodeposition of metallic Co in the ionic liquid was an irreversible process and controlled by the diffusion of Co(II) on a platinum working electrode. The average value of αnα was calculated to be 0.35 and the diffusion coefficient (D0) of Co(II) was calculated to be 1.76 × 10−8 cm2/s at 60 °C. Chronoamperometric results indicated that the electrodeposition of Co on a platinum working electrode followed the mechanism of instantaneous nucleation and three-dimensional growth with diffusion-controlled. The cobalt plating was uniform, dense, shining in appearance with good adhesion to the platinum substrate at 60 °C. The scanning electron microscope (SEM) micrographs were used to confirm that the cobalt plating was denser and finer at 60 °C. Energy dispersive X-ray analysis (EDAX) profile showed that the obtained plating was pure cobalt. X-ray diffraction (XRD) pattern indicated that there was a preferred orientation direction and the average size of cobalt grains was 40 nm.  相似文献   

4.
d-limonene in water nanoemulsion was prepared by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether. Investigation using response surface methodology revealed that 10% d-limonene nanoemulsions formed at S0 ratio (d-limonene concentration to mixed surfactant concentration) 0.6-0.7 and applied power 18 W for 120 s had droplet size below 100 nm. The zeta potential of the nanoemulsion was approximately −20 mV at original pH 6.4, closed to zero around pH 4.0, and around −30 mV at pH 12.0. The main destabilization mechanism of the systems is Ostwald ripening. The ripening rate at 25 °C (0.39 m3 s−1 × 1029) was lower than that at 4 °C (1.44 m3 s−1 × 1029), which was in agreement with the Lifshitz-Slezov-Wagner (LSW) theory. Despite of Ostwald ripening, the droplet size of d-limonene nanoemulsion remained stable after 8 weeks of storage.  相似文献   

5.
The polydiethylsiloxane-based ferrofluid was prepared by dispersing finely divided magnetic Fe3O4 particles which are modified with oleoyl sarcosine and lauroyl sarcosine. The optimized experiment parameters including molar ratio of surfactant to Fe3O4 (1:5), temperature (80 °C), stirring rate (300 RPM), the surfactant content of lauroyl sarcosine (0 to 33 mol%) and the modification time (25 min) were obtained by the orthogonal test. The magnetic liquid was characterized by a transmission electron microscope (TEM), infrared (IR) spectrometer, X-ray diffractometer (XRD), thermogravimetry (TG), vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). It is indicated that the surfactant is mainly bonded to the surface of Fe3O4 nanoparticles through covalent bond between carboxylate (COO) and Fe atom. The modified magnetic particles are equally dispersed into the carrier and remain stable below −12 °C over 4 months. The ferrofluids exhibit excellent frost resistance property and distinctly reduced temperature coefficient of viscosity compared with polydimethylsiloxane-based ferrofluids and hydrocarbon-based ferrofluids, respectively. The saturation magnetization could reach up to 27.7 emu/g.  相似文献   

6.
Nano-sized Tb-doped YAG phosphor particles were synthesized by a mixed solvo-thermal method using stoichiometric amounts of inorganic aluminum and yttrium salts. The formation of YAG:Tb was investigated by means of XRD and IR spectra. The pure crystalline-phase YAG was prepared under moderate synthesis conditions (300 °C and 10 MPa), indicating that ethanol partly replaces water as the solvent, thus favoring the formation of YAG. TEM images showed that YAG:Tb phosphor particles sintered at 300 °C were basically of spherical shape, with good dispersion about a particle size of around 80 nm. The crystalline YAG:Tb showed green emission with 5D47F6 (544 nm) as the most prominent group. The PL intensity and crystallinity of YAG:Tb phosphors increases with increasing synthesis temperature, and reaches maximum brightness at 300 °C, which is lower than that exhibited by a commercial product.  相似文献   

7.
Electrodeposition was employed to fabricate magnetite (Fe3O4) coated carbon fibers (MCCFs). Temperature and fiber surface pretreatment had a significant influence on the composition and morphology of Fe3O4 films. Uniform and compact Fe3O4 films were fabricated at 75 °C on both nitric acid treated and untreated carbon fibers, while the films prepared at 60 °C were continuous and rough. Microwave measurements of MCCF/paraffin composites (50 wt.% of MCCFs, pretreated carbon fibers as deposition substrates) were carried out in the 2-18 GHz frequency range. MCCFs prepared at 60 °C obtained a much higher loss factor than that prepared at 75 °C. However, the calculation results of reflection loss were very abnormal that MCCFs prepared at 60 °C almost had no absorption property. While MCCFs prepared at 75 °C exhibited a good absorption property and obtained −10 dB and −20 dB refection loss in wide matching thickness ranges (1.0-6.0 mm and 1.7-6.0 mm range, respectively). A secondary attenuation peak could also be observed when the thickness of MCCF/paraffin composite exceeded 4.0 mm. The minimum reflection loss was lower.  相似文献   

8.
Nucleation, as an important stage of freezing process, can be induced by the irradiation of power ultrasound. In this study, the effect of irradiation temperature (−2 °C, −3 °C, −4 °C and −5 °C), irradiation duration (0 s, 1 s, 3 s, 5 s, 10 s or 15 s) and ultrasound intensity (0.07 W cm−2, 0.14 W cm−2, 0.25 W cm−2, 0.35 W cm−2 and 0.42 W cm−2) on the dynamic nucleation of ice in agar gel samples was studied. The samples were frozen in an ethylene glycol-water mixture (−20 °C) in an ultrasonic bath system after putting them into tubing vials. Results indicated that ultrasound irradiation is able to initiate nucleation at different supercooled temperatures (from −5 °C to −2 °C) in agar gel if optimum intensity and duration of ultrasound were chosen. Evaluation of the effect of 0.25 W cm−2 ultrasound intensity and different durations of ultrasound application on agar gels showed that 1 s was not long enough to induce nucleation, 3 s induced the nucleation repeatedly but longer irradiation durations resulted in the generation of heat and therefore nucleation was postponed. Investigation of the effect of ultrasound intensity revealed that higher intensities of ultrasound were effective when a shorter period of irradiation was used, while lower intensities only resulted in nucleation when a longer irradiation time was applied. In addition to this, higher intensities were not effective at longer irradiation times due to the heat generated in the samples by the heating effect of ultrasound. In conclusion, the use of ultrasound as a means to control the crystallization process offers promising application in freezing of solid foods, however, optimum conditions should be selected.  相似文献   

9.
A polyol synthesis of silver nanoparticles in the presence of ultrasonic irradiation was compared with other configurations (at ambient temperature, 120 °C, and 120 °C with injected solutions) in the absence of ultrasonic irradiation in order to obtain systematic results for morphology and size distribution. For applying ultrasonic irradiation, rather fine and uniform spherical silver particles (21 ± 3.7 nm) were obtained in a simple (at ambient temperature without mechanical stirring) and fast (within 4 min, 3.61 × 10−3 mol min−1) manner than other cases (at ambient temperature (for 8 h, 0.03 × 10−3 mol min−1): 86 ± 16.8 nm, 120 °C (for 12 min, 1.16 × 10−3 mol min−1): 64 ± 14.9 nm, and 120 °C with injected solutions (during 12 min): 35 ± 6.8 nm; all other cases contained anisotropic shaped particles). Even though the temperature of polyol reaction reached only at 80 °C (<120 °C) in the presence of ultrasonic irradiation, a uniform mixing (i.e. enhanced collision between silver particle and surrounding components) by ultrasonic irradiation might induce a better formation kinetics and morphological uniformity.  相似文献   

10.
The use of a TiB2 diffusion barrier for Ni/Au contacts on p-GaN is reported. The annealing temperature (25-950 °C) dependence of ohmic contact characteristics using a Ni/Au/TiB2/Ti/Au metallization scheme deposited by sputtering were investigated by contact resistance measurements and auger electron spectroscopy (AES). The as-deposited contacts are rectifying and transition to ohmic behavior for annealing at ≥500 °C . A minimum specific contact resistivity of ∼3 × 10−4 Ω cm−2 was obtained after annealing over a broad range of temperatures (800-950 °C for 60 s). The contact morphology became considerably rougher at the higher end of this temperature range. AES profiling showed significant Ti and Ni outdiffusion through the TiB2 at 800 °C. By 900 °C the Ti was almost completely removed to the surface, where it became oxidized. Use of the TiB2 diffusion barrier produces superior thermal stability compared to the more common Ni/Au, whose morphology degrades significantly above 500 °C.  相似文献   

11.
Peng Ju 《Journal of luminescence》2011,131(8):1724-1730
The interaction between flower-like CdSe nanostructure particles (CdSe NP) and bovine serum albumin (BSA) was investigated from a spectroscopic angle under simulative physiological conditions. Under pH 7.4, CdSe NP could effectively quench the intrinsic fluorescence of BSA via static quenching. The binding constant (KA) was 6.38, 3.27, and 1.90×104 M−1 at 298, 304, and 310 K, respectively and the number of binding sites was 1.20. According to the Van't Hoff equation, the thermodynamic parameters (ΔH°=−77.48 kJ mol−1, ΔS°=−168.17 J mol−1 K−1) indicated that hydrogen bonds and van der Waals forces played a major role in stabilizing the BSA−CdSe complex. Besides, UV-vis and circular dichroism (CD) results showed that the addition of CdSe NP changed the secondary structure of BSA and led to a decrease in α-helix. These results suggested that BSA underwent substantial conformational changes induced by flower-like CdSe nanostructure particles.  相似文献   

12.
The Ce6−xYxMoO15−δ solid solution with fluorite-related structure have been characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), IR, Raman, scanning electric microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The electric conductivity of samples is investigated by Ac impedance spectroscopy. An essentially pure oxide-ion conductivity of the oxygen-deficiency was observed in pure argon, oxygen and air. The highest oxygen-ion conductivity was found in Ce5.5Y0.5MoO15−δ ranging from 5.9×10−5 (S cm−1) at 300 °C to 1.3×10−2 (S cm−1) at 650 °C, respectively. The oxide-ion conductivities remained stable over 80 h-long test at 800 °C. These properties suggested that significant oxide-ionic conductivity exists in these materials at moderately elevated temperatures.  相似文献   

13.
Visible-light-activated Ce-Si co-doped TiO2 photocatalyst   总被引:1,自引:0,他引:1  
To enhance the visible photocatalytic activity and thermal stability of TiO2, Ce-Si co-doped TiO2 materials were synthesized through a nonaqueous method of which the purpose was to reduce the aggregation between TiO2 particles. The obtained materials maintained anatase phase and large surface area of 103.3 m2 g−1 even after calcined at 800 °C. The XPS results also indicated that Si was weaved into the lattice of TiO2, and Ce mainly existed as oxides on the surface of TiO2 particles. The doped Si might enhance surface area and suppress transformation from anatase to rutile, while the doped Ce might cause visible absorption and inhibit crystallite growth during heat treatment. Evaluated by decomposing dye Rhodamine B, visible photocatalytic activity of Ce-Si co-doped TiO2 was obviously higher than that of pure TiO2 and reached the maximum at Ce and Si contents of 0.5 mol% and 10 mol%.  相似文献   

14.
The superhydrophobic polyphenylsilsesquioxane (PPSQ)/nanosilica composite coatings were prepared by spray coating method with nano fumed silica (NFS) particles embedded in PPSQ matrix. The water contact angle (WCA) increased from 92.9° to 152.5° and the sliding angle (SA) decreased from more than 60° to 3.9° as the NFS content increased. The superhydrophobicity retained up to 500 °C, sustained by the hierarchical micro-nano structures and excellent thermal stability of PPSQ. A superhydrophobic PPSQ coating with WCA of 152.6° and SA of 7.8° was obtained by solvent-nonsolvent method for comparison as well. However, it gradually lost superhydrophobicity at 200 °C because of the elimination of nanostructures by the thermal softening of PPSQ.  相似文献   

15.
The annealing temperature dependence of contact resistance and layer stability of ZrB2/Ti/Au and Ni/Au/ZrB2/Ti/Au Ohmic contacts on p-GaN is reported. The as-deposited contacts are rectifying and transition to Ohmic behavior for annealing at ≥750 °C, a significant improvement in thermal stability compared to the conventional Ni/Au Ohmic contact on p-GaN, which is stable only to <600 °C. A minimum specific contact resistance of ∼2 × 10−3 Ω cm−2 was obtained for the ZrB2/Ti/Au after annealing at 800 °C while for Ni/Au/ZrB2/Ti/Au the minimum value was 10−4 Ω cm−2 at 900 °C. Auger Electron Spectroscopy profiling showed significant Ti, Ni and Zr out diffusion at 750 °C in the Ni/Au/ZrB2/Ti/Au while the Ti and Zr intermix at 900 °C in the ZrB2/Ti/Au. These boride-based contacts show promise for contacts to p-GaN in high temperature applications.  相似文献   

16.
This paper reports the preparation and characterization of novel thin film electrolytes by UV cross-linking of poly(propylene glycol) diacrylate in the presence of polyetheramine (glyceryl poly(oxypropylene)triamine) and LiTFSI. The oligomeric surfactant polyetheramine facilitates self-assembly of the electrolyte, enabling it to be applied conformally onto a complex substrate which is necessary for 3D-microbatteries, while the acrylate network supplies mechanical stability. Conformal coatings onto LiFePO4 electrodes and Cu nanopillars were confirmed by SEM. Ionic conductivities of 3.5 × 10− 6 and 5.8 × 10− 5 S/cm were measured at room temperature and 60 °C, respectively, at Li:O = 1:20 and PEA:PPGDA = 2:1 ratios. The electrochemical stability window test showed that the electrolyte is stable above 5.0 V vs. Li/Li+. Thermal analyses by TGA and DSC demonstrated that the polymer electrolyte is amorphous and thermally stable up to 300 °C.  相似文献   

17.
The use of activated carbon obtained from Euphorbia rigida for the removal of a basic textile dye, which is methylene blue, from aqueous solutions at various contact times, pHs and temperatures was investigated. The plant material was chemically modified with H2SO4. The surface area of chemically modified activated carbon was 741.2 m2 g−1. The surface characterization of both plant- and activated carbon was undertaken using FTIR spectroscopic technique. The adsorption process attains equilibrium within 60 min. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity of activated carbon was 114.45 mg g−1 at 40° C. The adsorption kinetics of methylene blue obeys the pseudo-second-order kinetic model and also followed by the intraparticle diffusion model up to 60 min. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 55.51 kJ mol−1. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal textile dyes from textile wastewater processes.  相似文献   

18.
0.7BiFeO3-0.3PbTiO3 (BFPT7030) thin films were deposited on SiO2/Si substrates by sol-gel process. The influence of heating rate on the crystalline properties of BFPT7030 thin films were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). XRD patterns of the films showed that a pure perovskite phase exists in BFPT7030 films annealed by rapid thermal annealing (RTA) technique. SEM and AFM observations demonstrated that the BFPT7030 films annealed by RTA at 700 °C for 90 s with the heating rate of 1 °C s−1 could show a dense, crack-free surface morphology, and the films’ grains grow better than those of the films annealed by RTA at the same temperature with other heating rates. XPS results of the films indicated that the ratio of Fe3+:Fe2+ is about 21:10 and 9:5 for the films annealed by RTA at 700 °C for 90 s with the heating rate of 1 and 20 °C s−1, respectively. That means the higher the heating rate, the higher the concentration of Fe2+ in the BFPT7030 thin films.  相似文献   

19.
p-Type ZnO thin films have been realized via doping Li as acceptor by using pulsed laser deposition. In our experiment, Li2CO3 was used as Li precursor, and the growth temperature was varied from 400 to 600 °C in pure O2 ambient. The Li-doped ZnO film prepared at 450 °C possessed the lowest resistivity of 34 Ω cm with a Hall mobility of 0.134 cm2 V−1 s−1 and hole concentration of 1.37 × 1018 cm−3. X-ray diffraction (XRD) measurements showed that the Li-doped ZnO films grown at different substrate temperatures were of completely (0 0 2)-preferred orientation.  相似文献   

20.
Nanostructured copper (II) oxide was formed on clean copper foil at room temperature using activated oxygen produced by RF discharge. CuO particles of approximately 10-20 nm were observed on the surface by Scanning Tunneling Microscopy (STM). The copper states and oxygen species of the model cupric oxide were studied by means of X-ray Photoelectron Spectroscopy (XPS). These oxide particles demonstrated abnormally high reactivity with carbon monoxide (CO) at temperatures below 100 °C. The XPS data showed that the interaction of CO with the nanostructured cupric oxide resulted in reduction of the CuO particles to Cu2O species. The reactivity of the nanostructured cupric oxide to CO was studied at 80 °C using XPS in step-by-step mode. The initial reactivity was estimated to be 5 × 10−5 and was steadily reduced down to 5 × 10−9 as the exposure was increased. O1s spectral analysis allowed us to propose that the high initial reactivity was caused by the presence of non-lattice oxygen states on the surface of the nanostructured CuO. We established that reoxidation of the partially reduced nanostructured cupric oxide by molecular oxygen O2 restored the highly reactive oxygen form on the surface. These results allowed us to propose that the nanostructured cupric oxide could be used for low temperature catalytic CO oxidation. Some hypotheses concerning the nature of the non-lattice oxygen species with high reactivity are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号