首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ether ether ketone)/carbon fiber composites (PEEK/Cf) were chemical etched by Cr2O3/H2SO4 solution, electroless plated with copper and then electroplated with nickel. The effects of chemical etching time and temperature on the adhesive strength between PEEK/Cf and Cu/Ni layers were studied by thermal shock method. The electrical resistance of some samples was measured. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface composition and functional groups. Scanning electron microscopy (SEM) was performed to observe the surface morphology of the composite, the chemical etched sample, the plated sample and the peeled metal layer. The results indicated that CO bond increased after chemical etching. With the increasing of etching temperature and time, more and more cracks and partially exposed carbon fibers appeared at the surface of PEEK/Cf composites, and the adhesive strength increased consequently. When the composites were etched at 60 °C for 25 min and at 70-80 °C for more than 15 min, the Cu/Ni metallization layer could withstand four thermal shock cycles without bubbling, and the electrical resistivity of the metal layer of these samples increased with the increasing of etching temperature and time.  相似文献   

2.
PES-TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in PES casting solutions. The crystal structure, thermal stability, morphology, hydrophilicity, permeation performance, and mechanical properties of the composite membranes were characterized in detail. XRD, DSC and TGA results showed that the interaction existed between TiO2 nanopaticles and PES and the thermal stability of the composite membrane had been improved by the addition of TiO2 nanopaticles. As shown in the SEM images, the composite membrane had a top surface with high porosity at low loading amount of TiO2, which was caused by the mass transfer acceleration in exposure time due to the addition of TiO2 nanopaticles. At high loading amount of TiO2, the skinlayer became much looser for a significant aggregation of TiO2 nanopaticles, which could be observed in the composite membranes. EDX analysis also revealed that the nanoparticles distributed in membrane more uniformly at low loading amount. Dynamic contact angles indicated that the hydrophilicity of the composite membranes was enhanced by the addition of TiO2 nanopaticles. The permeation properties of the composite membranes were significantly superior to the pure PES membrane and the mean pore size also increased with the addition amount of TiO2 nanopaticles increased. When the TiO2 content was 4%, the flux reached the maximum at 3711 L m−2 h−1, about 29.3% higher than that of the pure PES membrane. Mechanical test also revealed that the mechanical strength of composite membranes enhanced as the addition of TiO2 nanopaticles.  相似文献   

3.
Poly (ether ether ketone)(PEEK) is a high-performance semi-crystalline thermoplastic polymer.Exposure of the polymeric surface to solvents can have a strong effect like softening/swelling of polymeric network or dissolution.In this study,nano-indentation analysis was performed to study the effect of acetone on the surface mechanical properties of PEEK using different exposure time.The experiments were performed with a constant loading rate (10 nm/s) to a maximum indentation displacement (1000 nm).A 30-second hold segment was included at the maximum load to account for any creep effects followed by an unloading segment to 80% unloading.The indentation hardness and the elastic modulus were computed as a continuous function of the penetration displacement in the continuous stiffness mode (CSM) indentation.The experimental data showed that the peak load decreased from ~5.2 mN to ~1.7 mN as exposure time in solvent environment increased from 0 to 18 days.The elastic modulus and the hardness of PEEK samples also displayed a decreasing trend as a function of exposure time in the solvent environment.Two empirical models were used to fit the experimental data of hardness as a function of exposure time which showed a good agreement with the experimental values.  相似文献   

4.
Graft polymerization of acrylic acid (AA) onto porous polyethersulfone (PES) membrane surfaces was developed using corona discharge in atmospheric ambience as an activation process followed by polymerization of AA in aqueous solution. The effects of the corona parameters and graft polymerization conditions on grafting yield (GY) of AA were investigated. The grafting of AA on the PES membranes was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analysis. Porosimetry measurements indicate the average pore diameters and porosities of the modified membranes decrease with the increase of the GY. The hydrophilicity and surface wetting properties of the original and modified membranes were evaluated by observing the dynamic changes of water contact angles. It is found that the grafting of AA occurs not only on the membrane surfaces, but also on the pore walls of the cells inside the membrane. The permeability experiments of protein solution reveal that the grafting of PAA endows the modified membranes with enhanced fluxes and anti-fouling properties. The optimized GY of AA is in the range of 150-200 μg/cm2. In addition, the tensile experiments show the corona discharge treatment with the power lower than 150 W yields little damage to the mechanical strength of the membranes.  相似文献   

5.
The carboxylic poly(arylene ether nitrile)/Fe3O4 hybrid microspheres were prepared via solvothermal method. The carboxylic poly(arylene ether nitrile) (PEN-COOH) was introduced into the Fe3O4 microspheres by chemisorption with mass content up to 15% as defined by infrared spectra and thermal gravimetric analysis. The hybrid sphere is of hierarchical polymer-inorganic microstructure as observed by transmission electron microscopy. The microwave-absorption of the sample owns a shifting peak and a special immobilized peak with the variation of absorber thickness from 3 to 5 mm. Maximum microwave-absorption of the product is capable of over −30 dB in the range of 10-12 GHz. By proposed equivalent filter circuit model, the immobilized peak was attributed to the ordered nanostructure where the Fe3O4 nanocrystals were isolated by PEN-COOH. The product has the potential to be applied as microwave absorber with high microwave-absorption, good dispersibility and robust polymer-inorganic interfacial adherence.  相似文献   

6.
Ultrafiltration membranes were prepared from blends with polysulfone (PSf) and sulfonated poly(ether ether ketone) (SPEEK) by phase inversion technique. The blend membranes were prepared with polymer composition from 0 to15 wt%. Sulfonated poly(ether ether ketone) was used to improve the performance and permeability of blended membranes. The effects of polymer composition on compaction, pure water flux, water content, and membrane hydraulic resistance were studied. The membranes were also subjected to the determination of pore statistics and molecular weight cut-off (MWCO) determination studies by using different molecular weight of proteins. The porosity, pore size of the membranes increased with increasing concentrations of SPEEK in the casting solution. Similarly, the MWCOs of the blend membranes ranged from 20 to 45 kDa, depending on the various polymer blend compositions. The pure water flux of the PSf/SPEEK blend membranes increases from 16.7 to 61.5 l m−2 h, when the concentration of SPEEK increased from 0 to 15 wt%. Scanning electron microscope (SEM) results qualitative evidence for the trends observed for the pore statistics and MWCO studies.  相似文献   

7.
Poly(ether ether ketone) (PEEK) was irradiated with 4?MeV O+ and 5 and 10?MeV Au+ ions to the fluences from 1012 to 1014?cm?2 and then treated in 5 M/l water solution of LiCl for one month at room temperature. After drying and removal of LiCl surface contamination, the depth distribution of LiCl embeded in PEEK was measured by the neutron depth profilig method (NDP) sensitive to 6Li isotope. Embeded LiCl is believed to map distribution of water diffusing into PEEK interior. The results show that the PEEK irradiated to the fluences above 1.1013cm?2 is prone to water penetration to the depths of few microns. On the pristine PEEK and that irradiated to lower ion fluences only a surface Li contamination is observed.  相似文献   

8.
We report on the novel ternary hybrid materials consisting of semiconductor (TiO2), metal (Ag) and polymer (poly(oxyethylene methacrylate) (POEM)). First, a hydrophilic polymer, i.e. POEM, was grafted from TiO2 nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. These TiO2-POEM brush nanoparticles were used to template the formation of Ag nanoparticles by introduction of a AgCF3SO3 precursor and a NaBH4 aqueous solution for reduction process. Successful grafting of polymeric chains from the surface of TiO2 nanoparticles and the in situ formation of Ag nanoparticles within the polymeric chains were confirmed using transmission electron microscopy (TEM), UV-vis spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). FT-IR spectroscopy also revealed the specific interaction of Ag nanoparticles with the CO groups of POEM brushes. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the semiconductor, producing ternary hybrid inorganic-organic nanomaterials.  相似文献   

9.
The graft polymerization of acrylic acid (AAc) was carried out onto poly(tetrafluoroethylene) (PTFE) films that had been pretreated with remote argon plasma and subsequently exposed to oxygen to create peroxides. Peroxides are known to be the species responsible for initiating the graft polymerization when PTFE reacts with AAc. We chose different parameters of remote plasma treatment to get the optimum condition for introducing maximum peroxides (2.87 × 10−11 mol/cm2) on the surface. The influence of grafted reaction conditions on the grafting degree was investigated. The maximum grafting degree was 25.2 μg/cm2. The surface microstructures and compositions of the AAc grafted PTFE film were characterized with the water contact angle meter, Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Contact angle measurements revealed that the water contact angle decreased from 108° to 41° and the surface free energy increased from 22.1 × 10−5 to 62.1 × 10−5 N cm−1 by the grafting of the AAc chains. The hydrophilicity of the PTFE film surface was greatly enhanced. The time-dependent activity of the grafted surface was better than that of the plasma treated film.  相似文献   

10.
魏纪周  张铭  邓浩亮  楚上杰  杜敏永  严辉 《物理学报》2015,64(8):88101-088101
采用脉冲激光沉积方法, 通过调节激光能量、激光频率、衬底温度、氧压、靶基距等工艺参数, 在(100)取向的铝酸镧单晶衬底上制备出Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3多铁性异质结. X射线衍射图谱表明薄膜呈钙钛矿结构, 高分辨透射电镜图谱和能量色散X射线图谱表明两相界面清晰且具有良好的匹配度, 异质结呈(00l)取向性生长. 加场冷却条件下不同温度的磁滞回线(M-H)测量结果表明样品具有明显的交换偏置效应, 交换偏置场(HEB)随温度的线性变化可能与异质结界面处电子轨道的重构和界面处自旋、轨道自由度之间的复杂的相互作用有关.  相似文献   

11.
New organic–inorganic composite membranes based on poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-poly(styrene sulfonic acid) [P(VDF-co-CTFE)-g-PSSA] with embedded phosphotungstic acid (PWA) were prepared. Fourier transform infrared spectra indicated the existence of a specific interaction between P(VDF-co-CTFE)-g-PSSA graft copolymer and PWA particles. PWA nanoparticles were well confined in the polymeric matrix up to 20 wt.%, above which they started to be extracted from the matrix, as revealed by scanning electron microscope analysis. Accordingly, Young’s modulus of membranes also increased with PWA concentration up to 20 wt.%, above which it continuously decreased. Upon incorporation of PWA nanoparticles, the proton conductivity of composite membranes slightly decreased from 0.042 to 0.035 S/cm at room temperature up to 20 wt.%, presumably due to strong interaction between the sulfonic acids of graft copolymer and PWA nanoparticles. The characterization by thermal gravimetric analysis demonstrated the enhancement of thermal stabilities of the composite membranes with increasing concentration of PWA.  相似文献   

12.
张国营  夏天  程勇  薛刘萍  张学龙 《物理学报》2006,55(6):3091-3094
研究了顺磁性晶体CeF3内交换作用有效场随温度的变化关系,给出了其形式为Hin=(-0.68-0.002T)×10-6M.结合该关系,用量子理论的计算得到了与实验值吻合较好的磁化率倒数、Verdet常数倒数随温度的变化关系,并且用光磁效应的概念和规律对结果作了进一步分析,指出光诱导促进了该晶体内电子间的交换作用. 关键词: 3晶体')" href="#">CeF3晶体 交换作用 磁光效应 光磁效应  相似文献   

13.
Abstract

Two kinds of thermotropic liquid crystalline polyesters (TLCP) with different chemical structures were used as flow modifiers during the melt spinning of poly (ether ether ketone). One of TLCPs, named PAT-S, was a kind of aromatic polyester synthesized from 4-acetoxybenzoicacid and 6-hydroxy-naphthoic acid, and the other one named, PEEKAR, was a block copolymer based on poly (ether ether ketene) (PEEK) oligomers and PAT-S oligomers. The effects of the chemical structures of the prepared TLCPs on the rheological behavior of the TLCP/PEEK blends were measured by rheological measurements, and then the structure and properties of the TLCP/PEEK in-situ blend fibers were studied by a series of methods, including differential scanning calorimetry (DSC), wide angle X-ray diffraction (WRXD), optical microscopy (OM), scanning electron microscopy (SEM), orientation degree tests, mechanical properties tests, etc. The results showed that the melt viscosity of PEEK could be effectively reduced by nearly 20% by adding a small amount of PEEKAR or PAT-S with the viscosity reducing effect of PEEKAR on PEEK being greater than that of PAT-S; this was mainly caused by the better compatibility between PEEK and PEEKAR because of the similar segment structures. The crystallinity of the PEEK fibers increased by nearly 50% with addition of both TLCPs, indicating that both the PEEKAR and PAT-S could serve as nucleating agent as well. The results from the morphology analysis clearly proved that PEEKAR had a better compatibility with the PEEK resin compared with PAT-S. The tensile strength of the PEEK fibers could be improved to some extent by adding PEEKAR, while it was obviously reduced after adding PAT-S.  相似文献   

14.
邵公望  金国良 《中国物理 B》2009,18(3):1096-1104
A general numerical tool,based on thermal diffusion equation and full-vectorial eigen-mode equation,has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er3+ doped glass.Finite difference method with full-vectorial formulation(FV-FDM) is applied to solving the full-vectorial modes of graded index channel waveguide for the first time.The coupled difference equations based on magnetic fields in FV-FDM are derived from the Taylor series expansion and accurate formulation of boundary conditions.Hybrid nature of vectorial guided modes for both pump(980 nm) and signal light(1550 nm) are demonstrated by the simulation.Results show that the fabrication parameters of ion exchange,such as channel opening width and time ratio of second step to first step in ion exchange,have large influence on the properties of waveguide.By optimizing the fabrication parameters,maintenance of monomode for signal light and improvement of the gain dynamics can be achieved in Er3+ doped waveguide amplifier(EDWA) fabricated by ion exchange technique.This theoretical model is significant for the design and fabrication of EDWA with ion exchange technique.Furthermore,a single polarization EDWA,which operates at wavelength from 1528 nm to 1541 nm for HE polarization,is numerically designed.  相似文献   

15.
Two kinds of hydrophilic polymers, poly(oxyethylene methacrylate) (POEM) and poly(styrene sulfonic acid) (PSSA), were grafted from TiO2 nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. Chlorine modified TiO2 nanoparticles (TiO2-Cl), the ATRP initiators, were synthesized by the reaction of -OH in TiO2 with 2-chloropropionyl chloride (CPC). FT-IR, UV-vis spectroscopy and X-ray photoelectron spectroscopy (XPS) clearly showed that the polymer chains were successfully grafted from the surface of TiO2 nanoparticles. The hydrophilically modified TiO2 nanoparticles have a better dispersion in alcohol than unmodified nanoparticles, as revealed by transmission electron microscopy (TEM). It was also found that the polymer grafting did not significantly alter the crystalline structure of the TiO2 nanoparticles according to the X-ray diffraction (XRD) patterns. Grafting amounts were 10% of the weight for both TiO2-POEM and TiO2-PSSA nanoparticles, as determined by thermogravimetric analysis (TGA).  相似文献   

16.
李志文  何学敏  颜士明  宋雪银  乔文  张星  钟伟  都有为 《物理学报》2016,65(14):147101-147101
利用溶剂热/热分解的方法合成出微结构可控的γ-Fe_2O_3/NiO核-壳结构纳米花.分析表明NiO壳层是由单晶结构的纳米片构成,这些纳米片不规则地镶嵌在γ-Fe_2O_3核心的表面.Fe3O4/Ni(OH)_2前驱体的煅烧时间对γ-Fe_2O_3/NiO核-壳体系的晶粒生长、NiO相含量和壳层致密度均有很大的影响.振动样品磁强计和超导量子干涉仪的测试分析表明,尺寸效应、NiO相含量和铁磁-反铁磁界面耦合效应是决定γ-Fe_2O_3/NiO核-壳纳米花磁性能的重要因素.随着NiO相含量的增加,磁化强度减小,矫顽力增大.在5 K下,γ-Fe_2O_3/NiO核-壳纳米花表现出一定的交换偏置效应(H_E=46 Oe),这来自于(亚)铁磁性γ-Fe_2O_3和反铁磁性NiO之间的耦合相互作用.与此同时,这种交换耦合效应也进一步提高了样品的矫顽力(H_C=288 Oe).  相似文献   

17.
Rigid, glassy polymers show a diversity of tensile behavior-ranging from apparently brittle to ductile. To delineate some of the factors that control the toughness or impact resistance of these polymers, the yielding behavior of poly (methyl methacrylate) (PMMA) was studied. Results of other workers have shown that the cold flow exhibited by many glassy polymers can be explained qualitatively by a free-volume model. The treatment assumes that molecular flow is permitted when the free volume increase, resulting from the dilatational component of the applied stress, is sufficient to bring the total free volume to that characteristic of the polymer liquid. The present study refines this approach by introducing an “effective temperature,” defined as that hypothetical temperature at which the glass would have an equilibrium free volume equal to the total free volume of the nonequilibrium glass at temperature T. Equations are derived which more satisfactorily describe the temperature and strain-rate dependences of the tensile yield strain of PMMA glass from -10° to 90°C at rates between 0.015 and 120%/sec.  相似文献   

18.
Y2O3 thin films were deposited by ion beam assisted deposition (IBAD) and the effects of fabrication parameters such as substrate temperature and ion energy on the structure, optical and electrical properties of the films were investigated. The results show that the deposited Y2O3 films had less optical absorption, larger refractive index, and better film crystallinity with the increase of substrate temperature or ion energy. The as-deposited Y2O3 films without ion-beam bombardment had larger relative dielectric constant (?r) and the ?r decreased with time even over by 40%, while the ?r of films prepared with high ion energy had less changes, only less than 3%. Also, with the increase of ion energy, the electrical breakdown strength and the figure of merit increased.  相似文献   

19.
王维  祁欣  岳元 《中国物理 B》2011,20(1):17502-017502
This paper theoretically investigates the effects of crystal field and exchange interaction field on magnetic properties in dysprosium gallium garnet under extreme conditions (low temperatures and high magnetic fields) based on quantum theory. Here, five sets of crystal field parameters are discussed and compared. It demonstrates that, only considering the crystal field effect, the experiments can not be successfully explained. Thus, referring to the molecular field theory, an effective exchange field associated with the Dy--Dy exchange interaction is further taken into account. Under special consideration of crystal field and the exchange interaction field, it obtains an excellent agreement between the theoretical results and experiments, and further confirms that the exchange interaction field between rare-earth ions has great importance to magnetic properties in paramagnetic rare-earth gallium garnets.  相似文献   

20.
采用固相烧结方法制备了Pr1-xCaxMnO3(x=0.3)钙态矿结构锰氧化物陶瓷样品,对其在磁场和电场下的直、交流输运性质做了系统研究.通过测量加磁场和零场下的Ⅰ-Ⅴ曲线,得到其居里温度为150K,与VSM测试结果一致.通过测量加磁场与零场下交流的阻抗频谱,发现加磁场后样品的晶界电阻明显减小,而晶粒电阻几乎保持不变,表明Pr1-xCaxMnO3陶瓷多晶样品的CMR效应源于样品的晶界.为确定晶界处的势垒高度,测量了样品在不同频率下的阻抗温谱,根据Arrhenius定律拟合得出势垒高度为117 meV,与用直流R-T数据拟合得出的激活能一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号