首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An open (closed) system, in which matter is (not) exchanged through surface diffusion, was realized via growth kinetics. Epitaxially grown Si-Ge:Si (001) islands were annealed in different environments affecting the diffusivity of Si adatoms selectively. The evolution of the driving forces for intermixing while approaching the equilibrium was inferred from Synchrotron x-ray measurements of composition and strain. For the open system, intermixing due to the Si inflow from the wetting layer (reservoir) caused a decrease in the Ge content, leading to a lowering of the elastic energy and an increase in the mixing entropy. In contrast, for the closed system, while keeping the average Ge composition constant, atom rearrangement within the islands led to an increase in both elastic and entropic contributions. The Gibbs free energy decreased in both cases, despite the different evolution paths for the composition profiles.  相似文献   

2.
The Si capping of Ge/Si(001) islands was observed by in situ time-resolved transmission electron microscopy. During the initial stages of the Si deposition, islands were observed not only to flatten but also to shrink in volume. This unexpected shrinkage is explained by taking into account the intermixing of the deposited Si with the wetting layer and a consequently induced diffusion of Ge from the islands into the wetting layer. A model of the capping process which takes into account Ge diffusion is presented which is in good agreement with the experimental data.  相似文献   

3.
The distribution of Ge islands is analysed in order to understand their optical behaviour. The Ge islands described in this paper were deposited by low-pressure chemical vapour deposition at relatively high temperature (700 °C), therefore the diffusion length of adatoms is high (∼100 μm) and thus, not the limiting factor for nucleation. By changing the deposition time and the coverage, square-based pyramids, domes and relaxed domes are nucleated. Mainly domes emit light, the emission being in the wavelength range 1.38–1.55 μm. When pyramids or relaxed domes are present, the photoluminescence broadens and decreases in intensity. The electroluminescence of vertically correlated islands increases with the number of layers, i.e. with the number of islands. The nucleation of islands on patterned (001) Si is changed when the deposition is performed on Si mesas with high index facets. The size distribution becomes narrower when the mesa size is decreased. An intermixing of up to 40% Si in the 2D layer was determined from photoluminescence data. PIN diodes fabricated on patterned wafers show an area-dependent electroluminecence related to a different microstructure of islands on large and small mesas. Finally, the lateral ordering on {hkl} facets is discussed. Received: 14 April 2000 / Accepted: 17 April 2000 / Published online: 6 September 2000  相似文献   

4.
We investigated the initial growth stages of Si(x)Ge(1-x)/Si(001) by real time stress measurements and in situ scanning tunneling microscopy at deposition temperatures, where intermixing effects are still minute (< or =900 K). Whereas Ge/Si(001) is a well known Stranski-Krastanow system, the growth of SiGe alloy films switches to a 3D island mode at Si content above 20%. The obtained islands are small (a few nanometers), are uniform in shape, and exhibit a narrow size distribution, making them promising candidates for future quantum dot devices.  相似文献   

5.
Incorporating self-assembled Ge islands on Si surfaces into electronic devices has been suggested as a means of forming small features without fine-scale litho- graphy. For use in electronic devices, the electrical properties of the deposited Ge and their relation to the underlying Si substrate must be known. This report presents the results of a surface photovoltage investigation of the surface energy barrier as increasing amounts of Ge are added to a Si surface by chemical vapor deposition. The results are interpreted in terms of band discontinuities and surface states. The surface barrier increases as a wetting layer is deposited and continues to increase as defect-free islands form. It saturates as the islands grow. As the amount of Ge continues increasing, defects form, and the surface barrier decreases because of the resulting allowed states at the Ge/Si interface. Qualitatively similar behavior is found for Si(001) and Si(111). Covering the Ge with Si reduces the surface-state density and possibly modifies the wetting layer, decreasing the barrier to one more characteristic of Si. Initial hydrogen termination of the surface decreases the active surface-state density. As the H desorbs, the surface barrier increases until it stabilizes as the surface oxidizes. The behavior is briefly correlated with scanning-tunneling spectroscopy data. Received: 13 November 2000 / Accepted: 14 November 2000 / Published online: 23 May 2001  相似文献   

6.
The effects of thermal annealing in Si base self-assembled Ge dots have been investigated by Raman spectra and PL spectra. An obvious Raman frequency shift under different annealing temperature can be observed. There are two main effects during the annealing procession: one is the inter-diffusion of the Si and Ge quantum dots; the other is the relaxation of the elastic strain. With the calculated results, PL blue shift can be related to strain relaxation effects, and/or a general decrease of Ge content due to the Ge-Si intermixing.  相似文献   

7.
The different mechanisms involved in the alloying of epitaxial nanocrystals are reported in this Letter. Intermixing during growth, surface diffusion, and intraisland diffusion were investigated by varying the growth conditions and annealing environments during chemical vapor deposition. The relative importance of each mechanism was evaluated in determining a particular composition profile for dome-shaped Ge:Si (001) islands. For samples grown at a faster rate, intermixing during growth was reduced. Si surface diffusion dominates during H2 annealing, whereas Ge surface diffusion and intraisland diffusion prevail during annealing in a PH3 environment.  相似文献   

8.
The chemical contrast between Si and Ge obtained by scanning tunneling microscopy on Bi-covered Si(111) surfaces is used as a tool to identify two vertical Ge/Si intermixing processes. During annealing of an initially pure Ge monolayer on Si, the intermixing is confined to the first two layers approaching a 50% Ge concentration in each layer. During epitaxial growth, a growth front induced intermixing process acting at step edges is observed. Because of the open atomic structure at the step edges, relative to the terraces, a lower activation barrier for intermixing at the step edge, compared to the terrace, is observed.  相似文献   

9.
Self-organized Ge islands grown on patterned Si(001) substrates have been investigated. Selective epitaxial growth (SEG) of Si is carried out with gas-source molecular beam epitaxy to form Si stripe mesas followed by subsequent Ge island growth. Self-aligned Ge islands with regular spacing are formed on the <110>-oriented ridges of the Si mesas. The regular spacing is driven by the repulsive interaction between the neighbor islands through the substrates. A mono-modal distribution of the islands has been observed on the ridges of the Si mesas. The spatial confinement as well as the preferential nucleation is believed to be the mechanism of this alignment of the self-organized Ge islands. Received: 16 July 1999 / Accepted: 6 August 1999 / Published online: 24 March 2000  相似文献   

10.
In this paper, we present an analysis for treating the spectroscopic ellipsometry response of Si/Ge superlattices (SLs) with embedded Ge dots. Spectroscopic ellipsometry (SE) measurement at room temperature was used to investigate optical and electronic properties of Si/Ge SLs which were grown on silicon (Si) wafers having 〈111〉 crystallographic orientation. The results of the SE analysis between 200 nm and 1000 nm indicate that the SL system can effectively be described using an interdiffusion/intermixing model by assuming multicrystalline Si and Si1?x Ge x intermixing layers. The electronic transitions deduced from the analysis reveal Si-, Ge- and alloying-related critical energy points.  相似文献   

11.
At low temperatures a lateral photoconductivity (PC) of Ge/Si (1 0 0) self-organized quantum rings (QRs) structures as a function of interband light intensity has been investigated for different values of lateral voltage and temperature. In contrast to self-organized Ge/Si quantum dots (QDs) structures (grown at the same conditions) where the stepped PC was registered, for QRs structures essential smoothing of PC steps was observed. Such behavior is determined by decreasing of strain potential around QRs in conductive Si matrix due to a transfer of Ge atoms from the center of QDs to its periphery accompanied by Ge/Si intermixing.  相似文献   

12.
The photoluminescence spectra of structures with self-assembled GeSi/Si(001) islands are investigated as functions of the growth temperature. It is shown that the shift of the peak of photoluminescence from islands toward lower energies on decreasing the growth temperature is due to the suppression of Si diffusion into islands and an increase in the fraction of Ge in islands. A photoluminescence signal from the GeSi islands is found in the region of energies down to 0.6 eV, which is considerably smaller than the band-gap width in bulk Ge. The position of the peak of photoluminescence from islands is described well by the model of a real-space indirect optical transition with account of the real composition and elastic strains of the islands. Mono-and multilayer structures are obtained with self-assembled GeSi/Si(001) nanoislands exhibiting a photoluminescence signal in the region 1.3–2 μm at room temperature.  相似文献   

13.
Real-time scanning tunneling microscopy observations of nucleation and heteroepitaxial growth of Ge nanocrystals (from germane) on Si(001) indicate that in the absence of Si-Ge intermixing the formation of full hut cluster islands is preceded by the nucleation of "subcritical" nuclei consisting of two adjacent truncated tetrahedral pyramids, which, upon unification, form a tiny square-based pyramidal "critical nucleus" It is suggested that such a precursor aids in surpassing the nucleation barrier and that the recently reported gradual faceting of prepyramids is characteristic of only Ge(Si) alloys.  相似文献   

14.
高山虎  张云  荀坤  赵汝光  杨威生 《物理学报》1993,42(8):1290-1296
用可调探测深度的电子能量损失谱辅以俄歇电子能谱和低能电子衍射,研究Sn/Si系统的界面反应。结果表明:当Sn蒸镀量大于两个原子单层,退火温度由400℃到700℃,在Sn/Si(111)界面Sn与Si发生互混,形成几个原子层厚的Sn/Si互混层,该互混层的特征体峰在15.5eV。在相同温度范围退火,Sn/Si(001)界面无可察觉的互混,仍有Sn岛存在,长时间在550℃退火低能电子衍射图形上出现(113)小晶面的衍射斑。 关键词:  相似文献   

15.
Two approaches to control the position and the size of semiconductor islands are proposed. The first method is to perform overgrowth on a cleaved edge of strained multiple quantum wells which acts as a substrate with a periodically modulated lattice constant, thus inducing a periodic strain to the overgrown layer. The second method is to selectively grow islands in specific windows defined by electron beam lithography. Both the methods are applied to the Ge/Si system and the controllability of the Ge island formation is demonstrated.  相似文献   

16.
We report on studies of strain and composition of two-dimensionally ordered SiGe islands grown by molecular beam epitaxy using high resolution x-ray diffraction. To ensure a small size distribution of the islands, pit-patterned (001) Si wafers were used as substrates. The Si wafers were patterned by optical lithography and reactive ion etching. The pits for island growth are ordered in regular 2D arrays with periods ranging from 500 to 1000 nm along two orthogonal 〈110〉 directions. After the growth of a Si buffer layer, 5 to 9 monolayers of Ge are deposited, leading to the formation of islands with either dome- or barn shape, depending on the number of monolayers deposited. The Si capping of the islands is performed at low temperatures (300C) to avoid intermixing and thus strain relaxation. Information on the surface morphology obtained by atomic force microscopy (AFM) was used to set up models for three-dimensional Finite Element Method (FEM) simulations of the islands including the patterned Si substrate. In the model, special attention was given to the non uniform distribution of the Ge content within the islands. The FEM results served as an input for calculating the diffracted x-ray intensities using kinematical scattering theory. Reciprocal space maps around the vicinity of symmetric (004) and asymmetric (113) and (224) Bragg peaks were recorded in coplanar geometry. Simulating different germanium gradients leads to altered scattered intensity distribution and consequently information on this quantity is obtained for both dome- and barn-shaped islands as well as on the strain fields.  相似文献   

17.
We report on the growth and properties of Ge islands grown on (0 0 1) Si substrates with lithographically defined two-dimensionally periodic pits. After thermal desorption and a subsequent Si buffer layer growth these pits have an inverted truncated pyramid shape. We observe that on such prepatterned substrates lens-like Ge-rich islands grow at the pit bottoms with less Ge deposition than necessary for island formation on flat substrates. This is attributed to the aggregation of Ge at the bottom of the pits, due to Ge migration from the pit sidewalls. At the later stages of growth, dome-like islands with dominant {1,1,3} or {15,3,23}, or other high-index facets [i.e. {15,3,20} facets] are formed on the patterned substrates as shown by surface orientation maps using atomic force microscopy. Furthermore, larger coherent islands can be grown on patterned substrates as compared to Ge deposition on flat ones.  相似文献   

18.
By using scanning tunneling microscopy we found that the surface reconstruction of Ge/Si(001) epilayers evolves from (M x N) to (2 x N), and eventually to (2 x 1), during exposure to a Si flux. This sequence appears to be just the inverse of that observed during the growth of Ge or SiGe alloys on Si(001). However, molecular dynamics simulations supported by ab initio calculations allow us to interpret this morphological evolution in terms of Si migration through the epilayer and complex Si-Ge intermixing below the top Ge layer.  相似文献   

19.
The dependence of photoluminescence spectra of structures with GeSi/Si(0 0 1) self-assembled nanoislands on growth temperature has been investigated. It was shown that the redshift of the island-related photoluminescence peak with a decrease of the growth temperature is associated with suppression of Si diffusion in the islands and an increase of Ge content in them. For the first time a photoluminescence signal from SiGe islands was observed at energies much lower than the Ge band gap. The energy position of the island-related photoluminescence peak is well described by the model of optical transition, which is indirect in real space. The photoluminescence signal at 1.55 μm from GeSi/Si(0 0 1) self-assembled islands was obtained up to room temperature.  相似文献   

20.
The Ge/Si (1 0 0) nanostructures have been studied by atomic force microscopy (AFM) and Micro Raman optical spectroscopy. Two layers of Ge of total thickness 0.75 nm and Si cap with thickness 2.5 nm were deposited by the method of molecular beam epitaxy at the temperature range 640–700 °C. AFM shows both quantum dots and ring-shape Ge nanostructures. From the analysis of the intensity and energy shift of the Raman signal we have found that the average concentration of Ge decreases considerably from 44% to 27%, when the growth temperature increases, whereas the degree of strain relaxation remains roughly the same. This allows us to conclude that intermixing is a dominating mechanism for strain relaxation in processes of transformation of Ge quantum dots to quantum rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号