首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A few nm thick 3,4,9,10-perylenetetracarboxylic acid dianhydride (PTCDA) and Cu-phthalocyanine (CuPc) overlayers were thermally deposited in situ in UHV onto TiO2 (1 1 0) surface. Atomic composition of the surfaces under study was monitored using Auger electron spectroscopy (AES). The formation of the interfacial potential barrier and the structure of the unoccupied electronic states located 5-25 eV above the Fermi level (EF) was monitored using a probing beam of low-energy electrons according to the total current electron spectroscopy (TCS) method. The work function values upon the overlayer deposition changed from 4.6 to 4.9 eV at the PTCDA/TiO2 (1 1 0) interface and from 4.6 to 4.3 eV at the CuPc/TiO2 (1 1 0) interface. Band bending in the TiO2 substrate, molecular polarization in the organic film and changes in the work function due to the change in the surface composition were found to contribute to the formation of the interfacial potential barriers. Oxygen admixture related peaks were observed in the AES and in the TCS spectra of the CuPc overlayers. A mechanism of the transformations in the PTCDA and CuPc overlayers on the TiO2 (1 1 0) upon elevating temperature from 25 to 400 °C was suggested.  相似文献   

2.
We have studied the thin film formation and the electronic structure of the organic molecular semiconductor 3,4,9,10 perylene tetracarboxylic dianhydride (PTCDA), on clean and on hydrogen-passivated Si(0 0 1) surfaces. The studies were made by means of high resolution X-ray photoelectron spectroscopy (HRXPS), angle-resolved photoelectron spectroscopy (ARPES), near edge X-ray absorption fine structure (NEXAFS) and low energy electron diffraction (LEED). On the H passivated surface the changes in the electronic structure of the substrate and the molecules with increasing film thickness are very small. The molecular orbitals show a dispersive behavior, indicating that the PTCDA layers are ordered. On the reactive clean surface the anhydride groups of the molecule interact with the substrate as indicated by changes in the core level binding energies. This results in a much lower ordering in the film compared to PTCDA on a passivated silicon surface. There is no sign of decomposition of the molecule because of the more reactive substrate.  相似文献   

3.
We present the growth morphology, the long-range ordering, and the evolution of the valence band electronic states of ultrathin films of copper phthalocyanine (CuPc) deposited on the Au(1 1 0)-(1 × 2) reconstructed surface, as a function of the organic molecule coverage. The low energy electron diffraction patterns present a (5 × 3) reconstruction from the early adsorption stages. High-resolution UV photoelectron spectroscopy data show the disappearance of the Au surface states related to the (1 × 2) reconstruction, and the presence of new electronic features related to the molecule-substrate interaction and to the CuPc molecular states. The CuPc highest occupied molecular orbital gradually emerges in the valence band, while the interface electronic states are quenched, upon increasing the coverage.  相似文献   

4.
A detailed investigation of the multilayer growth of PTCDA on Ag(1 1 1) by high resolution LEED (SPA-LEED) is reported. The first two monolayers are closed and exhibit a structure, which is commensurate with respect to the underlying Ag(1 1 1) surface. The lattice parameters are close to those of the (1 0 2) plane of the β bulk phase of PTCDA, with deviations ?2%. The vertical stacking of the second layer with respect to the first monolayer (observed at 300 K) corresponds to that in the β bulk phase of PTCDA. At high growth temperatures (400 K), Stranski-Krastanov growth occurs from the third monolayer onward, and PTCDA clusters, preferentially with few well defined facets, grow. The structure of the clusters is that of the thermodynamically more stable α bulk phase of PTCDA. Contrary, at low growth temperatures (200 K), the growth proceeds in the Frank van der Merve mode, with several open layers. From slope selection there is evidence for an Ehrlich-Schwoebel barrier. The lateral packing of the PTCDA grown at low temperatures corresponds within error to that of the β bulk phase. The low temperature structure and morphology is meta-stable. Short annealing at 300 K flattens the PTCDA film, and prolonged annealing at 400 K causes the film to adapt the structure and morphology obtained directly at 400 K growth temperature. Presumably, the formation of layers with a β-phase-like lattice at low temperature is due to the better fit of the β phase, compared to the α phase lattice, to the underlying commensurate monolayer. However, at high growth temperatures, the thermodynamically more stable α phase grows, reducing the area of lattice misfit to the underlying commensurate first two layers by formation of clusters.  相似文献   

5.
Low temperature scanning tunneling microscopy (LT-STM) and scanning tunneling spectroscopy (STS) have been used to investigate adsorbed copper phthalocyanine (C32H16N8Cu) molecules on an ordered ultrathin Al2O3 film on the Ni3Al(1 1 1) surface as a function of coverage and annealing temperature. For sub-monolayer coverage and a deposition temperature of 140 K two different planar molecular adsorption configurations rotated by 30° with respect to each other were observed with submolecular resolution in the STM images. The template effect of the underlying oxide film on the CuPc orientation, however, is only weak and negligible at higher coverages. For θCuPc ≈ 1 ML, before completion of the first layer, the growth of a second layer was already observed. The measured spacing of 3.5 Å between first and second layer corresponds to the distance between the layers in the α-modification of crystalline CuPc. The molecules deposited at 140 K are thermally stable upon prolonged annealing to temperatures up to 250 K. By the use of STS the lowest unoccupied molecular orbital (LUMO) of the adsorbed copper phthalocyanine molecules has been identified at an energy of 1.2 eV above EF. The lateral distribution of the electronic states of the CuPc has been analyzed and mapped by STS.  相似文献   

6.
We have studied the interface and thin film formation of the organic molecular semiconductor 3,4,9,10 perylene tetracarboxylic dianhydride (PTCDA) on clean and on hydrogen passivated Si(0 0 1) surfaces. The studies were made by means of high resolution X-ray photoelectron spectroscopy (HRXPS), near edge X-ray absorption fine structure (NEXAFS), low energy electron diffraction (LEED), and atomic force microscopy (AFM). On the passivated surface the LEED pattern is somewhat diffuse but reveals that the molecules grow in several ordered domains with equivalent orientations to the substrate. NEXAFS shows that the molecules are lying flat on the substrate. The Si 2p XPS line shape is not affected when the film is deposited so it can be concluded that the interaction at the interface between PTCDA and the substrate is weak. The evolution of the film formation appears to be homogeneous for the first monolayer with a nearly complete coverage of flat lying molecules based on the XPS attenuation. For layer thickness of 0.5-2 monolayers (ML) the molecules start to form islands, attracting the molecules in between, leaving the substrate partly uncovered. For thicker films there is a Stranski-Krastanov growth mode with thick islands and a monolayer thick film in between. For the clean surface the ordering of the film is much lower and angle resolved photoelectron spectroscopy (ARPES) of the molecular orbitals have only a small dependence of the emission angle. NEXAFS shows that the molecules do not lie flat on the surface and also reveal a chemical interaction at the interface.  相似文献   

7.
The vertical bonding distance of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) above the Au(1 1 1) surface has been measured by the normal incidence X-ray standing wave (NIXSW) technique. The carbon skeleton of PTCDA has a vertical distance of D = (3.27 ± 0.02) Å to the Au(1 1 1) substrate. This distance corresponds very nearly to the sum of the van der Waals radii of carbon and gold, suggesting the adsorption to be a physisorptive one. In contrast, the PTCDA/Ag(1 1 1) interface which according to spectroscopic data follows the standard model of chemisorption very closely, shows a considerably smaller bonding distance of D = (2.86 ± 0.01) Å [A. Hauschild, K. Karki, B.C.C. Cowie, M. Rohlfing, F.S. Tautz, M. Sokolowski, Phys. Rev. Lett. 94 (2005) 036106, comment: Rurali et al., Phys. Lett. 95 (2005) 209205, reply: Phys. Rev. Lett. 95 (2005) 209206]. The different vertical adsorption heights of PTCDA on gold and silver are discussed in relation to the different bonding mechanisms on both noble metal surfaces.  相似文献   

8.
The growth of thin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) films on a 3C-SiC(0 0 1)c(2 × 2) substrate has been studied by means of photoelectron spectroscopy (PES) and atomic force microscopy (AFM). In the first monolayer the molecules interact with the substrate mainly through the O atoms in the end groups of the molecule. The O atoms have a higher binding energy in the first molecular layer compared to the following layers. No chemical shifts are observed in the Si 2p spectra or in the C 1s spectra from the perylene core of the molecules. From the VB spectra and LEED pattern we conclude that the substrate remains in the c(2 × 2) reconstruction after PTCDA deposition. For thicker films a Stranski-Krastanov film growth was observed with flat lying molecules relative to the substrate.  相似文献   

9.
Germanium dots have been grown on high twist angle (twist angle as high as 20°) molecular bonded silicon (0 0 1) substrates. We show that, depending on the thickness of the silicon film, the strain field generated by an ordered array of mixed edge interfacial tilt (miss-cut) dislocations may induce an ordered growth of germanium dots. We also show that in order to observe an influence of the mixed edge interfacial dislocations on the growth of germanium dots, the thickness of the film has to be much lower that the period of the mixed edge dislocations array. Germanium dots grown by molecular beam epitaxy on 10-15 nm thick silicon films with the period of tilt dislocation array of 43 nm show a high degree of self-ordering.  相似文献   

10.
Z. Dohnálek 《Surface science》2006,600(17):3461-3471
Thin Pd films (1-10 monolayers, ML) were deposited at 35 K on a Pt(1 1 1) single crystal and on an oxygen-terminated FeO(1 1 1) monolayer supported on Pt(1 1 1). Low energy electron diffraction, Auger electron spectroscopy, and Kr and CO temperature programmed desorption techniques were used to investigate the annealing induced changes in the film surface morphology. For growth on Pt(1 1 1), the films order upon annealing to 500 K and form epitaxial Pd(1 1 1). Further annealing above 900 K results in Pd diffusion into the Pt(1 1 1) bulk and Pt-Pd alloy formation. Chemisorption of CO shows that even the first ordered monolayer of Pd on Pt(1 1 1) has adsorption properties identical to bulk Pd(1 1 1). Similar experiments conducted on FeO(1 1 1) indicate that 500 K annealing of a 10 ML thick Pd deposit also yields ordered Pd(1 1 1). In contrast, annealing of 1 and 3 ML thick Pd films did not result in formation of continuous Pd(1 1 1). We speculate that for these thinner films Pd diffuses underneath the FeO(1 1 1).  相似文献   

11.
The self-assembly of meso-tetra (N-methyl-4-pyridyl) porphyrine tetratosylat (H2TMPyP) on an iodide modified Cu(1 1 1) surface has been studied by means of in situ electrochemical-scanning tunneling microscopy (EC-STM). The I/Cu(1 1 1) surface was found to be a good substrate for the self-assembly of highly ordered layers of porphyrin cations. Furthermore, a reversible structural phase transition within the highly ordered porphyrin layer was observed during variation of the electrode potential, as a consequence of changing electronic properties of the substrate.  相似文献   

12.
13.
L. Gao 《Surface science》2007,601(15):3179-3185
We report on the structural evolution at the initial growth stage of perylene thin films on Au(1 1 1) surface. Scanning tunneling microscopy and spectroscopy have been employed to investigate the structural and electronic properties at 78 K. Rapid molecular diffusion was observed at low submonolayer coverage. Molecules form an ordered structure at monolayer coverage. For the second layer, impinging molecules nucleate into molecular islands with an ordered intermediate structure.  相似文献   

14.
Adsorption, decomposition and oxidation of benzene on Ir(1 1 1) was studied by high resolution (synchrotron) XPS, temperature programmed desorption and low energy electron diffraction. Molecular adsorption of benzene on Ir(1 1 1) is observed between 170 K and 350 K. Above this temperature both desorption and decomposition of benzene take place. An ordered adsorbate structure was observed upon adsorption around 335 K. Decomposition involves C-C bond breaking as the formation of CHad is observed. The presence of a saturated Oad layer (0.5 ML) weakens molecular benzene adsorption and suppresses decomposition.  相似文献   

15.
We have used the Bi(0 0 0 1)/Si(1 1 1) template to grow highly ordered C60 epitaxial thin films and analyzed them using scanning tunneling microscopy and low-energy electron microscopy. The in situ low-energy electron microscope investigations show that the initial nucleation of the C60 islands on the surface takes place at surface defects, such as domain boundaries and multiple steps. The in-plane lattice parameters of this C60 film turns out to be the same as that of the bulk fcc(1 1 1) C60. The line-on-line epitaxial structure is realized in spite of a weak interaction between the C60 molecules and Bi(0 0 0 1) surface, while scanning tunneling spectroscopy indicates that there is a negligible charge transfer between the molecules and the surface.  相似文献   

16.
The behavior of specifically adsorbed bromide on Cu(1 1 0) in 10 mM HBr has been studied using cyclic voltammetry in combination with high resolution in situ electrochemical scanning tunneling microscopy (EC-STM).At cathodic potentials near the onset of the hydrogen evolution reaction the structure of the bare copper surface was observed by EC-STM. A variation of the electrode potential in positive direction causes a specific anion adsorption leading to the formation of a highly ordered superstructure with a quasi-hexagonal symmetry. The two-dimensional lattice of this adlayer can be described by a c(3 × 2) unit cell. The bromide anions are arranged parallel to the close packed copper rows and are located in three different types of adsorption sites. These inequivalently bound bromide species are imaged with different brightness in the STM-pictures. As a result the bromide adlayer exhibits a long-ranged wavy superstructure superimposed on the atomic corrugation.Tip induced copper corrosion is used to obtain highly ordered nanostructures due to a locally confined electrochemical annealing process proceeding along the [0 0 1]-direction of the substrate. This annealing process results in the formation of Cu(1 0 0)-facets.  相似文献   

17.
The adsorption of copper phthalocyanine (CuPc) on Cu(1 1 1) was studied by means of low-temperature scanning microscopy. At very low coverage, individual molecules are randomly distributed over the surface. Increasing the coverage, the molecules align in chains before forming ordered domains with a rectangular unit cell. The molecules are centered on top of a copper atom aligning two opposite lobes with a principal axis of the substrate. The topographic images of the molecules show a reduction of the fourfold to a twofold symmetry. At negative sample bias, a switching between two states at a typical rate of 500 Hz is observed for isolated molecules, which are neither adsorbed at defects nor forming chains or domains.  相似文献   

18.
Titanium dioxide films were grown on Re(1 0 −1 0) by Ti vapor deposition in oxygen at T = 830 K and studied by means of low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS) and X-ray diffraction (XRD). The Ti oxide stoichiometry was determined by XPS as Ti:O = 1:2, with the Ti oxidation state (4+). The TiO2 growth was monitored by means of LEED as a function of film thickness. Extending the coverage from the submonolayer into the multilayer regime gives rise to a p(2 × 2) pattern, a (poorly ordered) (1 × 1), and, finally, a stable (2 × 2) structure, the latter being associated with a homogeneous TiO2 phase. For normal electron incidence, the (2 × 2) LEED pattern exhibits systematically extinguished beams at (n ± 1/2, 0) positions, indicating a glide mirror plane. The pg(2 × 2) structure could be explained by both a rutile(0 1 1)-(2 × 1) reconstructed surface and a bulk truncated brookite(0 0 1) surface. Faceting phenomena, i.e. running LEED spots, observed with thin TiO2 films point to the formation of a rutile(0 1 1)-(2 × 1) surface with two domains and {0 1 1}-(2 × 1) facets and rule out the brookite alternative. Confirmation of this assignment was obtained by an XRD analysis performed at the Berlin synchrotron facility BESSY.  相似文献   

19.
We have studied the growth of cerium films on Rh(1 1 1) using STM (scanning tunneling microscopy), LEED (low energy electron diffraction), XPS (X-ray photoelectron spectroscopy) and AES (Auger electron spectroscopy). Measurements of the Ce films after room temperature deposition showed that Ce is initially forming nanoclusters in the low coverage regime. These clusters consist of 12 Ce atoms and have the shape of pinwheels. At a coverage of 0.25 ML (monolayer, ML) an adatom layer with a (2 × 2) superstructure is observed. Above 0.4 ML, Rh is diffusing through pinholes into the film, forming an unstructured mixed layer. Annealing at 250 °C leads to the formation of ordered Ce-Rh compounds based on the bulk compound CeRh3. At a coverage of 0.1 ML, small ordered (2 × 2) surface alloy domains are observed. The exchanged Rh atoms form additional alloy islands situated on the pure Rh(1 1 1) surface, showing the same (2 × 2) superstructure as the surface alloy. At a coverage of 0.25 ML, the surface is completely covered by the surface alloy and alloy islands. The (2 × 2) structure is equivalent to a (1 1 1)-plane of CeRh3, contracted by 6%. Annealing a 1 ML thick Ce layer leads to a flat surface consisting of different rotational domains of CeRh3(1 0 0). The Rh needed for alloy formation comes from 50 Å deep pits in the substrate. Finally we show that LEIS (low energy ion scattering) is not suitable for the characterization of Ce and CeRh films due to strong effects of neutralization.  相似文献   

20.
The adsorption structures of three xanthene dyes (rhodamine B (Rh B), fluorescein and eosin) on Au(1 1 1) in HClO4 solution, have been investigated by in situ scanning tunneling microscopy (STM) and cyclic voltammetry. High-resolution STM images reveal the molecular orientation and packing arrangement in the ordered adlayers. A (5 × 10) structure is found on Rh B adlayer. (5 × 8) structures are observed on fluorescein and eosin adlayers, respectively. An intriguing aspect of this work is that three xanthene molecules form dimeric structures on Au(1 1 1) surface. The electrostatic interaction and van der Waals force are responsible to the dimeric formation of Rh B, while the interaction between Br atoms and hydrogen bond correspond to the dimerization of eosin and fluorescein, respectively. The structural models are tentatively proposed for the three ordered adlayers. The results obtained will be helpful to understand the interaction mechanism of dimerization and the degradation mechanism of dye pollutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号