首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Output beams from three independently frequency-stabilized thulium master-oscillator power-amplifier fiber laser systems were spectrally combined using a plane-ruled metal diffraction grating. Two laser channels were frequency-stabilized with guided mode resonance filters and the third was stabilized using a plane-ruled metal diffraction grating. The systems had output wavelengths between 1984 and 2015 nm, each with a spectral width of 100-450 pm and output powers between 40-120 W. The combined beam had powers up to 49 W and was 32% efficient with respect to the launched pump power.  相似文献   

2.
We measured the temperature-dependent absorptance of metals (Al, Ti, SS304) for continuous beams from 1.07 μm fiber laser and 10.6 μm CO2 laser using power sensors and infrared (IR) pyrometers. The absorptance measurements were repeated for metals with three different paint coatings. For measurements at elevated temperatures up to the melting point, integrating sphere is not practical since high temperature radiation from a heated target disturbs weak output from the sphere considerably. Our results provide how each metal, whether coated or uncoated, absorbs the infrared beams as temperature is elevated to a melting point. A polynomial approximation to the measured absorptance of each target is provided for modeling of the laser-metal interaction at elevated temperatures.  相似文献   

3.
In this paper, a continuous-wave (CW) diode-side-pumped Nd:YAlO3 (Nd:YAP) laser operating at the weak line of 1339 nm has been achieved and investigated. The output of the 1339 nm laser was realized based on the polarization selection and reasonable transmittance design. The relationship between the output powers and resonator lengths of the 1339 nm Nd:YAP laser has been studied and the optimum resonator length was adopted to improve the output power. As high as 31.3 W output power of the a-axis polarized 1339 nm laser has been obtained at the pumping power of 555 W with the optical-optical and slope efficiencies to be 5.6% and 13%, respectively. This work will provide an effective way to obtain the weak line lasers for potential applications in spectroscopy, coherent terahertz generation, etc.  相似文献   

4.
The self-broadening coefficients of acetylene at room temperature have been measured for 10 lines in the P branch of the bands of 12C2H2 and 13C12CH2 near 1.533 μm, using a high resolution tunable diode laser spectrometer developed for the Martian space mission PHOBOS-Grunt. The collisional widths are obtained by fitting each recorded line with the Voigt profile as well as the Rautian profile accounting for the collisional Dicke narrowing effect. The standard Voigt model provides slightly smaller broadening coefficients than the Rautian model. Our data are thoroughly compared to the main atmospheric molecule database HITRAN and previous values in various bands of acetylene. Moreover, it is worth noting that a large number of new transitions not listed in the latest HITRAN08 were measured and identified for the first time.  相似文献   

5.
The pure water-vapor continuum absorption in the 2.88 to 5.18 μm spectral region has been measured using a Fourier-transform infrared spectrometer at a resolution of 0.1 cm−1. The sample temperatures and pressures varied from 311 to 363 K and from 2.8 kPa (21 Torr) to 34.5 kPa (259 Torr), respectively. The path lengths used in the study ranged from 68 to 116 m. Under these conditions, the continuum absorption in the middle of the 4 μm window is quite detectable reaching as high as 4%. The spectral processing included calculations to fit and remove the H2O ro-vibrational structure. In the region around 5 μm, the absorption coefficients obtained are in good agreement with those of the commonly used MT_CKD continuum model. However at shorter wavelengths, the observed values significantly deviate from the model. Inspection of the present data as well as that of previous measurements leads to the conclusion that the MT_CKD model despite the latest updates significantly underestimates the rate of the continuum temperature dependence over the 4 μm atmospheric window. Line strengths for 189 H2O transitions were obtained from the spectral processing. The deviation of these measured intensities from those listed in the HITRAN database is randomly scattered around zero to within several percents and no systematic trends were detected.  相似文献   

6.
The high resolution absorption spectrum of methane in the 1.58 μm transparency window has been recorded at room temperature and at 79 K by CW-Cavity Ring Down Spectroscopy using a cryogenic cell and a series of Distributed Feed Back (DFB) diode lasers. The achieved sensitivity (αmin ∼ 3 × 10−10 cm−1) has allowed for a detailed characterization of the 6289-6526 cm−1 region which corresponds to the lowest opacity of the transparency window. A list of 6868 and 4555 transitions with intensities as weak as 1 × 10−29 cm/molecule was constructed from the recordings at 297 and 79 K, respectively. By comparison with a spectrum of CH3D recorded separately by Fourier Transform Spectroscopy, 1282 and 640 transitions of monodeuterated methane, CH3D, in natural abundance in our sample were identified at 297 and 79 K, respectively.The rotational temperature determined from the intensity distribution of the 3ν2 band of CH3D (79.3 K) was found in good agreement with the temperature value previously obtained from the Doppler line broadening. The reduction of the rotational congestion by cooling down to 79 K reveals a spectral region near 6300 cm−1 where CH3D transitions are dominant.The low energy values of the transitions observed both at 79 K and at room temperature were derived from the variation of their line intensities. These transitions with lower energy determination represent 93.9% and 68.4% of the total absorbance in the region, at 79 K and room temperature, respectively. The quality of the obtained empirical low energy values is demonstrated for CH4 by the marked propensity of the empirical low J values to be close to integers. The line lists at 79 K and room temperature provided as Supplementary Material allow accounting for the temperature dependence of methane absorption between these two temperatures. The investigated region covering the 5ν4 band of the 12CH4 isotopologue will be valuable for the theoretical treatment of this band which is the lowest energy band of the icosad.  相似文献   

7.
Y. Sato 《Surface science》2009,603(15):2300-2304
We have characterized the phase transition between the (1 × 1) and (3 × √3)R30° - β phases on Pb/Ge(1 1 1) using low energy electron microscopy (LEEM). We show that the transition is first-order and that, in the coexistence region of the two phases, the dominant mechanism for phase separation changes critically with Pb coverage, from nucleation and growth at 1.33 ML (saturation coverage of the β phase) to spontaneous domain switching due to thermal fluctuations of the local Pb density for slightly smaller coverage. As the Pb coverage decreases, the concentration of vacancies in the β phase increases, making additional possible Pb adsorption sites available. The larger resulting local density fluctuation of Pb becomes comparable to the density difference of the two phases, manifesting itself in the observed domain switching.  相似文献   

8.
The high resolution absorption spectrum of methane has been recorded at liquid nitrogen temperature by direct absorption spectroscopy between 1.36 and 1.30 μm (7351-7655 cm−1) using a cryogenic cell and a series of distributed feed back (DFB) diode lasers. The investigated spectral range corresponds to the high energy part of the icosad dominated by the ν2+2ν3 band near 7510 cm−1. The positions and strengths at 81 K of 3473 transitions were obtained from the spectrum analysis. The minimum value of the measured line intensities (at 81 K) is on the order of 10−26 cm/molecule, i.e. significantly lower than the intensity cut off of the HITRAN database in the region (4×10−25 cm/molecule at 296 K). From the variation of the line strength between 81 and 296 K, the low energy values of 1273 transitions could be determined. They represent 69% and 81% of the absorbance in the region at 296 and 81 K, respectively. The obtained results are discussed in relation with the few rovibrational assignments previously reported in the region.  相似文献   

9.
We report a LD end pumped actively mode locked, passively Q switched and cavity dumped Nd:YAP laser at 1.34 μm. The dumped output pulse energy of 160 μJ is obtained at a repetition rate of 10 Hz. Passing through a LD end pumped, double-passed Nd:YAP amplifier the pulse energy is amplified to 1.44 mJ. The corresponding amplification factor is 9. Stimulated Raman scattering experiment is taken with a 9 mm long PbWO4 Raman crystal. Maximum of 20% Raman conversion is reached.  相似文献   

10.
Using first-principles density functional theory method, we have investigated the distribution and magnetism of doped Mn atoms in the vicinity of the Σ3 (1 1 2) grain boundary in Ge. We find that at low concentration, the substitutional sites are energetically favorable over the interstitial ones for Mn. The binding energy of Mn varies with lattice sites in the boundary region, and hence a non-uniform distribution of Mn nears the boundary. However, the average of their segregation energy is quite small, thus no remarkable grain boundary segregation of Mn is predicted. Due to volume expansion at the grain boundary, the spin polarization of Mn is slightly enhanced. Overall, we find that the magnetism of Mn-doped Ge is not sensitively dependent on the grain structure.  相似文献   

11.
The empirical line parameters of over 12,000 methane transitions have been obtained at 80 K in the 1.58 μm transparency window (6165-6750 cm−1) which is of importance for planetary applications. This line list (WKC-80K) was constructed from high sensitivity spectra of normal abundance methane recorded by CW-Cavity Ring Down Spectroscopy at low temperature. The minimum intensity reported is on the order of 5×10−30 cm/molecule. High resolution Fourier transform spectra have also been recorded using enriched CH3D samples at 90-120 K in order to facilitate identification of monodeuterated methane features in the methane line list at 80 K. The CH3D relative contribution in the considered region is observed to be much larger at 80 K than at room temperature. In particular, CH3D is found dominant in a narrow spectral window near 6300 cm−1 corresponding to the highest transparency region.Using a similar line list constructed at room temperature (Campargue A, Wang L, Liu AW, Hu SM and Kassi S. Empirical line parameters of methane in the 1.63-1.48 μm transparency window by high sensitivity Cavity Ring Down Spectroscopy. Chem Phys 2010;373:203-10.), the low energy values of the transitions observed both at 80 K and at room temperature were derived from the variation of their line intensities. Empirical lower states and J-values have been obtained for 5671 CH4 and 1572 CH3D transitions representing the most part of the absorbance in the region. The good quality of these derived energy values is demonstrated by the marked propensity of the corresponding CH4 lower state J values to be close to integers. The WKC line lists at 80 K and room temperature provided as Supplementary Material allow one accounting for the temperature dependence of methane absorption between these two temperatures. The importance of the 80 K line list for the study of Titan and other methane containing planetary atmospheres is underlined and further improvements are proposed. The resulting information will advance the theoretical modeling of the methane spectrum in the 1.58 μm transparency window.  相似文献   

12.
In this paper we present the simulation of Metal-Semiconductor-Metal photodetector (MSM-PD) of interdigitated planar structure based on InAlAs/InGaAs adapted for photodetection at the wavelength 1.55 μm. We use the theoretical models to plot the variations of the dark current, the photocurrent, the capacity, and the cut-off frequency of the photodetector as a function of bias voltage and the interelectrode distance. The obtained results show a very low dark current, mainly due to the introduction of a thin layer to increase the Schottky barrier based on In0.52Al0.48As in the epitaxial structure of component. The obtained photocurrent and cut-off frequencies are very appreciable, these latter are mainly limited by the transit time of the photo-generated carriers given the low component capacity obtained by simulation.  相似文献   

13.
14.
Infrared high resolution spectra of ozone 16O3 have been recorded in the 10 and 5 μm spectral ranges in order to derive their absolute intensities with a best achievable accuracy. Spectra have been recorded with the home made stepping mode FTS of GSMA (Reims). In the two spectral regions, we use UV-IR crossed beam cell. The quantification of ozone is achieved using UV cross section at 253.65 nm. A check of this UV calibration is also performed using direct pressure measurements of quasi-pure samples of O3. The intensities are derived from infrared spectra using multifit procedure already tested. In the 10 μm range, where 12 different spectra have been recorded, 65 well selected lines led to a good agreement (better than 0.3%) with the HITRAN 2008 (or 2004) values, confirming our previous work [De Backer-Barilly MR, Barbe A. Absolute intensities of the 10 μm bands of 16O3. J Mol Spectrosc 305:2001;43-53]. In the 5 μm range, where 18 transitions are selected, we also note a correct agreement with HITRAN 2008, despite a slightly larger averaged value between (1.9%) experimental and theoretical (HITRAN). As conclusion, authors suggest the use of current HITRAN 2008 data for atmospheric retrievals.  相似文献   

15.
The high resolution absorption spectra of 13CH4 were recorded at 81 K by differential absorption spectroscopy using a cryogenic cell and a series of distributed feed back (DFB) diode lasers and at room temperature by Fourier transform spectroscopy. The investigated spectral region corresponds to the high energy part of the 13CH4 tetradecad dominated by the 2ν3 overtone near 5988 cm−1. Empirical line lists were constructed containing, respectively, 1629 13CH4 transitions detected at 81 K (5852-6124 cm−1) and 3481 features (including 85 lines of 12CH4) measured at room temperature (5850-6150 cm−1); the smallest measured intensities are about 3 × 10−26 and 4 × 10−25 cm/molecule at 81 and 296 K, respectively. The lower state energy values were derived for 1196 13CH4 transitions from the variation of the line intensities between 81 and 296 K. These transitions represent 99.2% and 84.6% of the total absorbance in the region, at 81 and 296 K, respectively. Over 400 additional weak features were measured at 81 K and could not be matched to lines observed at room temperature. The quality of the resulting empirical low energy values is demonstrated by the excellent agreement with the already-assigned transitions and the clear propensity of the empirical low J values to be close to integers. The two line lists at 81 and at 296 K provided as Supplementary material will enable future theoretical analyses of the upper 13CH4 tetradecad.  相似文献   

16.
The high resolution absorption spectrum of methane has been recorded at liquid nitrogen temperature by differential absorption spectroscopy between 6717 and 7351 cm−1 (1.49-1.36 μm) using a cryogenic cell and a series of distributed feed back (DFB) diode lasers. The investigated spectral region corresponds to the very congested low energy part of the icosad for which the HITRAN database provides neither rovibrational assignments nor the lower state energies. The positions and strengths at 81 K of 9389 transitions were obtained from the spectrum analysis. The minimum value of the measured line intensities (at 81 K) is on the order of 10−26 cm/molecule. From the variation of the line strength between 81 K and 296 K, the low energy values of a total of 4646 transitions were determined. They represent 79.4% and 68.4% of the total absorbance in the region at 81 and 296 K, respectively, and include 28 transitions assigned to the ν2+4ν4 band near 6765 cm−1. The reliability of the method based on the association of lines with coinciding centers in the 81 K and 296 K spectra is discussed. The results of the present analysis have been combined with previously analyzed high energy part of the icosad dominated by the ν2+2ν3 band near 7510 cm−1. The line list for the whole icosad (6717-7655 cm−1) consists of 12 865 transitions at 81 K.  相似文献   

17.
Doppler-limited vib-rotational absorption spectra of the A ← X electronic transition of I35/37Cl are measured in the range 11,352-13,507 cm−1 using a Ti:sapphire ring laser. The P-, Q-, and R-branch lines belonging to the v ← v″ = (0-7) ← (0-7) transition in I35Cl and the v ← v″ = (0-6) ← (2-6) transition in I37Cl are assigned. Under Doppler-limited conditions, the P- and R-branch lines are split into doublets by the nuclear quadrupole coupling effect of the I atom. The unperturbed positions of these lines are correctly calculated, whereas splitting in the Q-branch lines was not observed. The mass-reduced Dunham expansion coefficients Ul,m of the A and X states and the spectroscopic constants , and Hv of the A state are determined using a global least-squares fitting procedure.  相似文献   

18.
This paper deals with the experimental investigation of the structure and magnetic properties of thin polycrystalline Fe films. Two sets of 50 ± 2 nm thick Fe films were fabricated on Si〈1 0 0〉 substrates with native oxides in place by varying (i) the sputter pressure pAr and (ii) the Fe sputter power PFe. X-ray diffraction (XRD) study revealed that all films grew with strong 〈1 1 0〉 texture normal to the film plane. No higher order peaks were observed in any of the films studied. For both film sets, the lattice constant (a) was less than the bulk Fe lattice constant (a0 = 2.866 Å), which suggested the existence of compressive strain in all films. Two regions of homogeneous strain were observed over the range of pAr studied. Magneto-optical Kerr effect (MOKE) measurements showed that all films exhibited magnetically isotropic behaviour. The magnetic properties were observed to be influenced strongly by pAr. The film grown at pAr = 4 μbar was the most softest (Hs = 100 ± 8 kA m−1, Mr/Ms = 0.87 ± 0.02) film among all the films studied. The magnetic properties were found to be independent of PFe. The effective saturation magnetostriction constant λeff determined (using the Villari method) was positive (4 ± 1 ppm) and observed to vary within the calculated error.  相似文献   

19.
In our recent contribution, (K.F. Song, S. Kassi, S.A. Tashkun, V.I. Perevalov, A. Campargue, J. Quant. Spectrosc. Radiat. Transf. 111 (2010) 332-344), line intensities have been measured for 2 and 6 bands of the 16O12C17O and 16O12C18O isotopologues detected in the range 7123-7917 cm−1 using Cavity Ring Down Spectroscopy. The present note describes the global fitting of these measured intensities, and derivation of sets of effective dipole moment parameters for these isotopologues. These parameters allow reproducing the intensities of the measured very weak lines (2 × 10−29-7 × 10−28 cm/molecule) with an RMS of residuals on the order of 6%.  相似文献   

20.
Measurements of multiple rotational lines in the (1, 0) band of the A2Πi − X2Σ+ “red” system of the cyanogen radical (CN) at sub-Doppler resolution are reported. The CN radical was produced by 193 nm photodissociation of NCCN (ethane dinitrile) and detected with a Ti:sapphire ring laser operating near 10 900 cm−1. The sample was exposed to a weak, frequency-modulated probe beam and a strong, counterpropagating bleach laser beam. Demodulated probe laser signals display absorption and dispersion features derived from Doppler-free saturation of the hyperfine components as the laser scans across the central region of a Doppler-broadened rotational line spectrum. Hyperfine-resolved transition frequencies were combined with known ground-state X2Σ hyperfine term values to determine A2Π state hyperfine term values, which were analyzed in terms of an effective Hamiltonian for the A2Π state. All the expected hyperfine and 14N quadrupolar parameters were determined and their values analyzed in terms of a simple molecular orbital picture of the bonding in the radical. Higher sensitivity obtained with 400 kHz amplitude modulation of the bleach laser and additional phase-sensitive detection allowed hyperfine splittings in some rotational lines of 13C14N to be observed in natural abundance. Excited state hyperfine splittings were determined for a selection of rotational states, but not enough to determine the 13C hyperfine parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号