首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Commercial titanium sheets pre-coated with 300-μm thick graphite layer were treated by employing a pulsed Nd:YAG laser in order to enhance surface properties such as wear and erosion resistance. Laser in-situ alloying method produced a composite layer by melting the titanium substrate and dissolution of graphite in the melt pool. Correlations between pulsed laser parameters, microstructure and microhardness of the synthesized composite coatings were investigated. Effects of pulse duration and overlapping factor on the microstructure and hardness of the alloyed layer were deduced from Vickers micro-indentation tests, XRD, SEM and metallographic analyses of cross sections of the generated layer. Results show that the composite cladding layer was constituted with TiC intermetallic phase between the titanium matrix in particle and dendrite forms. The dendritic morphology of composite layer was changed to cellular grain structure by increasing laser pulse duration and irradiated energy. High values of the measured hardness indicate that deposited titanium carbide increases in the conditions with more pulse duration and low process speed. This occurs due to more dissolution of carbon into liquid Ti by heat input increasing and positive influence of the Marangoni flow in the melted zone.  相似文献   

2.
TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti–6Al–4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.  相似文献   

3.
为了在不影响柱状晶组织的前提下改善DZ17G定向凝固合金的力学性能,采用微激光冲击强化方法进行表面处理,通过X射线衍射、扫描电子显微镜、透射电子显微镜和显微硬度计,测试分析微激光冲击对DZ17G定向凝固合金表面完整性的影响。试验结果表明:在水下无吸收保护层微激光冲击处理后,合金表面发生了烧蚀、熔融,1次冲击后形成光滑熔融区,但随着冲击次数增加而形成了大量微小烧蚀孔洞和难熔颗粒;表层组织仍由和两相组成,柱状晶内形成了高密度位错和位错缠结,但未发生晶粒细化;硬度在深度上呈梯度分布,冲击1次后硬化层深度仅为100 m,表面硬度值达到503 HV,提高了22.7%,而且硬度值和硬化层深度都随着冲击次数增加而增大。  相似文献   

4.
The laser chemical processing (LCP) technique for the local doping of crystalline silicon solar cells is investigated. Here, a liquid jet containing a dopant source acts as a waveguide for pulsed laser light, which results in the melting and subsequent doping of the silicon surface. Typical LCP pulse durations are in the 15 ns range, giving satisfactory results for specific parameter settings. While great potential is assumed to exist, optimization of the pulse duration has until now not been deeply investigated, because it is hard to change this parameter in laser systems. Therefore, this paper accesses the influence of the pulse duration by a simulative approach. The model includes optics, thermodynamics, and melt dynamics induced by the liquid jet and dopant diffusion into the silicon melt. It is solved by coupling our existing finite differences Matlab-code LCPSim with the commercial fluid flow solver Ansys Fluent. Simulations of axial symmetric single pulses were performed for pulse durations ranging from 15 ns to 500 ns. Detailed results are given, which show that for longer pulse durations lateral heat conduction significantly homogenizes the inhomogeneous dopant distribution caused by the speckled intensity profile within the liquid jet cross section. The melt expulsion by the liquid jet is low enough that a sufficiently doped layer remains after full resolidification for all pulse durations. Last, temperature gradients are evaluated to give an indication on the amount of laser damage induced by thermal stress.  相似文献   

5.
Polyethersulfone (PES) films were processed with KrF laser irradiation of different pulse durations (τ). Scanning electron microscopy (SEM) and Raman spectroscopy were employed for the examination of the morphology and chemical composition of the irradiated surfaces, respectively. During ablation with 500 fs and 5 ps pulses, localized deformations (beads), micro-ripple and conical structures were observed on the surface depending on the irradiation fluence (F) and the number of pulses (N). In addition, the number density of the structures is affected by the irradiation parameters (τ, F, N). Furthermore, at longer pulse durations (τ = 30 ns), conical structures appear at lower laser fluence values, which are converted into columnar structures upon irradiation at higher fluences. The Raman spectra collected from the top of the structures following irradiation at different pulse durations revealed graphitization of the ns laser treated areas, in contrast to those processed with ultra-short laser pulses.  相似文献   

6.
To understand the surface morphology evolution of fused silica induced by 10.6-μm CO2 laser irradiation at different parameters,this paper reports that optical microscopy,profilometry,and hydrophilicity tests are utilized to characterize the surface structure and roughness of the laser irradiated area. The results show that three typical surface morphologies and two typical hydrophilicity test images are observed at different laser powers and pulse durations. The correlations between surface temperature and surface morphology as well as hydrophilicity behaviours are presented. The different hydrophilicity behaviours are related to surface structures of the laser-induced crater and thermal diffusion area. The thermal diffusion length monotonously increases with increasing laser power and pulse duration. The crater width is almost determined by the laser beam size. The crater depth is more sensitive to the laser power and pulse duration than the crater width.  相似文献   

7.
Experimental system for nanosecond laser melting investigation was developed containing three independent noncontact methods: infrared radiometry, time-resolved reflectivity of He-Ne laser and sample surface reflected KrF heating laser pulse. The system was applied to the investigation of laser melting of Cu, Mo, Ni, Si, Sn, Ti, steel ?SN 15330 and stainless steel ?SN 17246 samples. For metallic samples the IR radiometry signal was transformed to temperature. Obtained surface temperature and reflectivity spectra in nanosecond time scale (10-1000 ns) for wide range of energy densities (100-5500 mJ cm−2) are presented. Interesting evolutions were found. Melting thresholds and melting durations were determined from the measured curves. The applicability of the methods is evaluated.  相似文献   

8.
Selective laser patterning of thin films in a multilayer structure is an emerging technology for the fabrication of MEMS devices. A 775-nm Ti:sapphire laser (130 fs, 1 kHz) was used to irradiate thin-film stacks with variations in the process parameters, such as the pulse energy, feed rate, and numerical aperture of the objective lens. The two layers of the Au/Cr film have the same thickness, which is about 1000 nm. They were coated on a glass substrate. By SEM, an AFM and an optical surface profiler, we investigate the morphology of a pattern including the line width, groove depth, and laser-induced periodic surface structures (LIPSSs). The ablation depth was observed to depend on the pulse energy. In addition, from the energy spectrum, we find which layer was removed completely. The experimental results show that precise micromachining with a desired stability and reproducibility can be achieved by controlling the ablation energy and the feed rate. With a different energy and feed rate, we have processed the gating and the circle, which with the smooth cutting edge and groove was consistent with the beam spatial distribution.  相似文献   

9.
Modeling of femtosecond laser damage threshold on the two-layer metal films   总被引:1,自引:0,他引:1  
The heating processes of the single-layer gold thin film and the two-layer film assembly of gold padded with other metal (silver, copper and nickel) irradiated by femtosecond laser pulse are studied by the two-temperature model. It is found that the substrate metal can change energy transport, which is corresponding to the temperature changing process, and the thermal equilibrium time. Compared with the single-layer gold film at the same laser fluence, the two-layer film structure can change the damage threshold of the gold surface. Our results indicate that we can maximize the damage threshold of the gold film surface by altering the thickness ratio of the gold layer and the substrate layer in the two-layer film assembly.  相似文献   

10.
The formation of periodic surface structures by ultrashort laser pulses was observed experimentally and explained theoretically. The experiments were performed on graphite with picosecond laser pulses. The spatial period of the structures is of the order of the wavelength of the incident radiation, and the orientation of the structures is correlated with the direction of polarization of the light. The key point of the theoretical model proposed is resonance excitation of surface electromagnetic waves, which under conditions such that the temperature of the electronic subsystem is decoupled from the temperature of the crystal lattice causes a “temperature grating” to be written on the flat solid surface of the sample while the laser pulse is being applied on account of the temperature dependence of the surface impedance. The formation of a periodic surface profile from the temperature grating occurs by the volume expansion of a melted layer near the surface of the material. For typical values of the surface tension and viscosity for metals, there is not enough time for the periodic profile to be resorbed before the liquid layer solidifies. The formation of periodic surface structures is delayed in time relative to the laser pulse. Zh. éksp. Teor. Fiz. 115, 675–688 (February 1999)  相似文献   

11.
Holes with diameters of about 400 µm have been laser trepanned in Ti6Al4V and carbon fibre reinforced polymer (CFRP) thin sheets with a thickness of 0.5 mm. A commercial CO2 laser (SM1500E, FEHA LaserTec, Germany) and a novel Q-switched CO2 laser (µ-storm, IAI, Netherlands) were used as radiation sources. Optical microscopy, scanning electron microscopy and replicas of the processed holes were used to investigate the influence of the CO2 laser pulse parameters (e.g. pulse energy, duration and peak power) on the processing quality. It was shown that melt formation and high temperature oxidation reactions of Ti6Al4V during thermal laser processing were reduced significantly by using short and high intense Q-switched CO2 laser pulses. During trepanning of CFRP heat affected zones resulting from the extremely different thermal properties (melting and vaporisation temperature, heat conduction) of the reinforcing carbon fibres and the polymer matrix were reduced significantly by using the Q-switched CO2 laser. The results demonstrate that Ti6Al4V and CFRP can be processed very precisely with CO2 laser radiation and air as processing gas without melt formation and thermal damage.  相似文献   

12.
Owing to poor tribological properties, titanium (Ti) alloys are usually surface-treated to enhance their surface properties. Laser surface nitriding, among others, is a common method employed to increase hardness and wear resistance for Ti alloys. Conventional laser nitriding involves surface melting of Ti alloys in a nitrogen atmosphere. This inevitably results in a roughened surface and post-treatment might be required. The present study aims at laser diffusion nitriding Ti alloys without surface melting via carefully selecting the laser processing parameters. The nitrided surface was characterized by X-ray diffractometry (XRD), optical microscopy (OM), scanning-electron microscopy (SEM), and profilometry. The nitride layer formed was about 1.62 μm upon repeated passes. The change in surface roughness resulting from laser diffusion nitriding was only minimal. Nanoindentation measurements revealed that the hardness of the nitride layer was around 11.3 GPa, being about 2.3 times that of Ti-6Al-4V. Ball-on-slab sliding wear test recorded a reduction in wear volume by about 8 times. The results of the present work thus demonstrate the feasibility of diffusion nitriding of Ti-6Al-4V by laser treatment for enhancing its surface properties and performance.  相似文献   

13.
Laser-induced breakdown spectroscopy (LIBS) was applied for parametric studies of titanium (Ti) plasma using single and double pulsed laser excitation scheme. Here a pulsed Nd:YAG laser was employed for generation of laser produced plasma from solid Ti target at ambient pressure. Several ionized titanium lines were recorded in the 312–334 nm UV region. The temporal evolution of plasma parameters such as excitation temperature and electron number density was evaluated. The effect of incident laser irradiance, position of the laser beam focal point with respect to the surface of illumination, single and double laser pulse effect on plasma parameters were also investigated. This study contributes to a better understanding of the LIBS plasma dynamics of the double laser pulse effect on the temporal evolution of various Ti emission lines, the detection sensitivity and the optimal dynamics of plasma for ionized states of Ti. The results demonstrate a faster decay of the continuum and spectral lines and a shorter plasma life time for the double pulse excitation scheme as compared with single laser pulse excitation. For double pulse excitation technique, the emissions of Ti lines intensities are enhanced by a factor of five which could help in the improvement of analytical performance of LIBS technique. In addition, this study proved that to avoid inhomogeneous effects in the laser produced plasma under high laser intensities, short delay times between the incident laser pulse and ICCD gate are required.  相似文献   

14.
通过采用CO_2激光对TC_4合金进行TiN表面合金化处理,探讨了激光功率对合金化层组织和硬度的影响。结果表明,激光合金化试样存在组织不同的三个区域,分别为TiN合金化层,基底熔凝层和淬火层。TiN合金化层由钛合金基体和TiN组成,其中TiN呈现颗粒和树枝晶两种形态。基底熔凝层为定向生长的柱状晶,基底淬火层为针状马氏体。TiN激光合金化层的硬度在700~1100HV之间,约为TC_4合金的2~4倍。  相似文献   

15.
In this paper, we investigated the mechanism of crystallization induced by femtosecond laser irradiation for an amorphous Si (a-Si) thin layer on a crystalline Si (c-Si) substrate. The fundamental, SHG, THG wavelength of a Ti:Sapphire laser was used for the crystallization process. To investigate the processed areas we performed Laser Scanning Microscopy (LSM), Transmission Electron Microscopy (TEM) and Imaging Pump-Probe measurements. Except for 267 nm femtosecond laser irradiation, the crystallization occurred well. The threshold fluences for the crystallization using 800 nm and 400 nm femtosecond laser irradiations were 100 mJ/cm2 and 30 mJ/cm2, respectively. TEM observation revealed that the crystallization occurred by epitaxial growth from the boundary surface between the a-Si layer and c-Si substrate. The melting depths estimated by Imaging Pump-Probe measurements became shallower when the shorter wavelength was used.  相似文献   

16.
We present the results of the study on the thermal conductivity of different thin film materials produced by conventional thermal evaporation. The main features of the thermal pulse method employed for the measurement of the thermal conductivity are described. Thermal conductivity can be measured by determining the traveling time of a thermal wave propagating trough the film. A pump laser beam is directed onto a sample consisting of a thin transparent test layer and a totally absorbing substrate for the laser wavelength. As a consequence of the laser pulse, a temperature profile builds up at the substrate-film interface. A thermal pulse starts to diffuse from the substrate-film interface to the surface of the layer. Therefore, the temperature rise at the surface of the test layer starts with a time delay with respect to the laser pulse. The time delay depends on the propagation time of the thermal wave through the layer and is related to the thermal conductivity and the thickness of the layer. Measurements are evaluated by calculations based on the finite difference method. The results show that the analyzed thin films have lower thermal conductivity than the corresponding materials in bulk form.  相似文献   

17.
The present study aims to analyze microstructures of TiC reinforced ferrous surface composites processed by accelerated electron beam irradiation. Two kinds of powder/flux mixtures, i.e., TiC and (Ti + C) powders with 40 wt% of CaF2 flux, were deposited evenly on an AISI 304 stainless steel substrate, which was then irradiated with electron beam. TiC agglomerates and pores were found in the surface composite specimen processed by irradiation of TiC powders because of insufficient melting of TiC powders. In the specimen processed by irradiation of Ti and C powders having lower melting points than TiC powders, a lot of large TiC carbides were precipitated in the melted region, together with a few TiC agglomerates or pores. This indicated the more effective TiC precipitation obtained from the melting of Ti and C powders, instead of TiC powders. The hardness of the surface composite layer was about two times higher than that of the AISI 304 substrate mainly due to the precipitation of TiC carbides.  相似文献   

18.
Analytical investigation into laser pulse heating and thermal stresses   总被引:1,自引:0,他引:1  
Laser pulse heating of metallic surfaces results in rapid rise of temperature in the region irradiated by the laser beam. This in turn results in high temperature gradient in this region. The irradiated substrate material expands as a response to the temperature gradient. Consequently, high thermal stress levels are developed in the region of the high temperature gradient. In the present study, closed form solutions for temperature and stress fields due to a laser pulse decaying exponentially in time are presented. A Laplace transformation method is employed in the analysis. The resulting equations are non-dimensionalized with the appropriate parameters. It is found that temperature rises rapidly during the early heating period in the surface region. In this case, internal energy gain dominates the conduction losses from the surface vicinity. The thermal stress levels attain high values in the surface region. The stress wave developed is compressive and it propagates with a wave speed c1 inside the substrate.  相似文献   

19.
Laser surface micro/nanopatterning by particle lens arrays is a well-known technique. Enhanced optical fields can be achieved on a substrate when a laser beam passes through a self-assembled monolayer of silica microspheres placed on the substrate. This enhanced optical field is responsible for ablative material removal from the substrate resulting in a patterned surface. Because of the laser ablation, the microspheres are often ejected from the substrate during laser irradiation. This is a major issue impeding this technique to be used for large area texturing. We explored the possibility to retain the spheres on the substrate surface during laser irradiation. A picosecond laser system (wavelength of 515 nm, pulse duration 6.7 ps, repetition rate 400 kHz) was employed to write patterns through the lens array on a silicon substrate. In this experimental study, the pulse energy was found to be a key factor to realize surface patterning and retain the spheres during the process. When the laser pulse energy is set within the process window, the microspheres stay on the substrate during and after laser irradiation. Periodic patterns of nanoholes can be textured on the substrate surface. The spacing between the nanoholes is determined by the diameter of the microspheres. The depth of the nanoholes varies, depending on the number of laser pulses applied and pulse energy. Large area texturing can be made using overlapping pulses obtained through laser beam scanning.  相似文献   

20.
CO_2激光预处理参数对石英基片表面粗糙度的影响   总被引:2,自引:0,他引:2  
为研究CO2激光预处理参数对熔石英基片表面粗糙度的影响,采用频率为100 Hz,光斑面积为1 mm2的CO2激光对理想的熔石英基片进行辐照处理,根据处理后基片表面微观形貌特征将修复程度分别定义为轻度、中度和重度修复,并对3种修复程度下基片的表面粗糙度值进行了统计。研究了不同脉冲作用时间和不同占空比(激光功率)的激光束单点单次辐照基片后的表面粗糙度。结果表明:石英基片的表面粗糙度均方根值和处理造成的凹陷深度均随脉冲作用时间和功率的增加逐渐变大;均方根值的增幅逐渐增加,凹陷深度的增幅逐渐减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号