首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
为了尽可能有效和准确地描述混凝土材料的非线性力学特性,在研究国内外混凝土损伤本构模型的基础上,基于连续介质损伤力学和不可逆热力学的理论框架,采用统一强度理论作为屈服破坏准则,分别定义拉、压双标量损伤来考虑材料的拉、压迥异特性,同时引入反向加载影响因子以修正拉压交替循环加载时材料的单边效应,以及多轴应力状态下拉、压损伤累积的相互影响,最终采用显式积分算法建立了一种改进的混凝土弹塑性损伤本构模型.不同素混凝土加载试验模拟结果初步验证了建议模型的有效性,而通过对含I型裂缝的混凝土简支梁试验进行数值分析,结果表明,所得的荷载 挠度曲线与试验结果吻合良好,进一步检验了模型应用于结构非线性分析的有效性.  相似文献   

2.
爆炸和冲击载荷下金属材料及结构的动态失效仿真   总被引:1,自引:1,他引:0       下载免费PDF全文
通过数值模拟研究爆炸冲击载荷下金属材料和结构的动态失效规律,对表征爆炸冲击毁伤效应及设计新型抗冲击结构有重要意义.强动载下金属材料失效涉及材料大变形、热力耦合、材料状态变化等多个复杂物理过程,给数值仿真带来了极大挑战,其中包括裂纹、剪切带等复杂失效模式的几何描述、动态失效准则的确定、塑性与损伤耦合演化的描述等问题.针对...  相似文献   

3.
This contribution proposes a fully three dimensional “continuum damage model” (CDM) to describe the interlaminar and intralaminar failure mechanisms of transversely isotropic elastic-brittle materials under static loading. The constitutive model is derived from an energy function with independent damage variables for each damage mode. The evolution law is based on energy dissipation within the damage process, taking into account the critical energy release rate to weaken the effect of mesh dependent outcome. The onset of damage can be predicted with Cuntze's failure mode concept [1] as well as with Hashin's failure criteria. In this model linear stress decreasing is assumed. In addition, an implicit-explicit integration scheme, first proposed by Oliver [3] for isotropic damage models, is adapted to increase the stability and robustness of numerical simulations and to decrease the computational cost of material failure analyses. By comparing the results from implicit-explicit integration schemes and standard implicit integration schemes, a high level of agreement is found. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
基于不可逆热力学,引入运动硬化、等向硬化和损伤内变量,构造了相应的自由能函数和流动势函数,推导出了混凝土材料的粘塑性损伤本构模型.数值模拟的结果表明,该模型能够避开屈服面和破坏准则的基本假设来描述混凝土材料的以下特性:压缩载荷作用下的体积膨胀现象;应变率敏感性;峰值后由损伤和破坏引起的应力软化和刚度退化现象A·D2由于此模型避开了根据各种变形阶段选择与其相应的本构模型的繁琐计算,因此更便于纳入复杂工况下应力分析有限元程序中.  相似文献   

5.
S. Kolling  A. Haufe 《PAMM》2005,5(1):303-304
Reliable prediction of the behaviour of structures made from polymers is a topic under considerable investigation in engineering practice. Especially, if the structure is subjected to dynamic loading, constitutive models considering the mechanical behaviour properly are not available in commercial finite element codes yet. A constitutive model is derived including important phenomena like necking, strain rate dependency, unloading behaviour and damage. In particular, different yield surfaces in compression and tension and strain rate dependent failure, the latter with damage induced erosion, is taken into account. With the present formulation, standard verification tests can be simulated successfully. Also, an elastic damage model can be used to approximate the unloading behaviour of thermoplastics adequately. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Reliability and life time of smart materials are crucial features for the development and design of actuator and sensor devices. Being widely used and exhibiting brittle failure characteristics, ceramic ferroelectrics are of particular interest in this field. Due to manifold interactions of the complex nonlinear constitutive behavior on the one hand and the damage evolution in terms of microcrack growth on the other, modeling and simulation are inevitable to investigate influence parameters on strength, reliability and life time. A condensed approach is used for the simulations considering just one characteristic point in the material, nonetheless accounting for polycrystalline grain interactions. On this basis, a model to predict the life time in terms of high cycle fatigue under electromechanical loading conditions is introduced. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Based on recent experimental observations on the formation of localization before delamination, a bifurcation-based decohesion approach is proposed in this paper to simulate the transition from localization to decohesion involved in the delamination process of compressed films. The onset and orientation of discontinuous failure are identified from the discontinuous bifurcation analysis. A discrete constitutive model is then formulated based on the bifurcation analysis to predict the evolution of material failure as decohesion or separation of continuum. The Material Point Method, that does not employ fixed mesh-connectivity, is developed as a robust spatial discretization method to accommodate the multi-scale discontinuities involved in the film delamination. To demonstrate the potential of the proposed approach, a parametric study is conducted to explore the effects of aspect ratio and failure mode on the evolution of failure patterns under different boundary conditions, which provides a better understanding on the physics behind the film delamination process.  相似文献   

8.
If circular metal plates are subjected repeatedly to impulsive loadings, damage and failure of the structures can occur. In order to predict the damage evolution in finite element simulations, a structural theory combined with viscoplastic constitutive equations acounting for damage is used. However, different structural hypotheses, used in the theoretical model, can lead to variations in the numerical result. Therefore, first- and third-order shear deformations theories are applied in a finite element code. Moreover, local and non-local damage approaches are used. The aim is to determine the numerical model, which leads to the most accurate results compared to experiments. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The macroscopic failure of composite materials is preceded by complex multilevel processes accompanied by accumulation and localization of damaged centers and formation of a failure cluster. Therefore, the study of these mechanisms is one of the basic problems for the mechanics of modern composite materials used in aerospace engineering. The formation of a theory of the stable postcritical deformation of the work-softening media is considered. The pseudo-plastic deformation affected by structural damage of granular composites is investigated within the framework of the considered two-level structurally phenomenological model of heterogeneous media. The stable evolution of the interconnected processes is accompanied by stress redistributions, partial or complete unloading, and strain or damage localization that are one of the main causes of implementation of the postcritical deformation stage. The numerical calculation results of inelastic deformation and failure of the periodic unidirectional fiber-reinforced composites are presented under conditions of the displacement-controlled transverse proportional loading mode. The main mechanisms of the work-softening behavior for the indicated type of materials are described in the macro-homogeneous stress-strain states. Macroscopically, the failure of heterogeneous media as a result of postcritical deformation and the loss of stability of damage accumulation depends on the stiffness of the loading system. When a deformable body is fixed on the closed surface with sufficiently but not infinitely large coefficients of stiffness, it is possible to observe the equilibrium development of the localized volumes of work-softening and damage. The constitutive equations for the work-softening isotropic, transverse isotropic, and orthotropic media are presented. The effect of the loading system on the stability of deformation, damage accumulation, and failure under monotone and nonmonotone triaxial loading was studied. The growth of failure strains with increase in stiffness of the loading system and unequal resistance of heterogeneous body are registered and investigated. A preventive unloading method is offered for the mathematical modeling of the damage accumulation during the testing of the materials on the servo-controlled systems. The displacement-controlled mode is simulated by a series of soft loading and unloading cycles. The detected phenomenon of failure where the unloading leads to stress-strain diagrams with a negative slope of the descending branch was not found either in the displacement or stress-controlled monotone loading mode.Submitted to the 10th International Conference on Mechanics of Composite Materials, April 20–23, 1998, Riga, Latvia.Perm' State Technical University, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 2, pp. 234–250, March–April, 1998.  相似文献   

10.
考虑损伤效应的正交各向异性板的弹塑性后屈曲分析   总被引:2,自引:1,他引:1  
基于弹塑性力学和损伤理论,建立了一个与应力球张量有关的正交各向异性材料的混合硬化屈服准则,该准则无量纲化后与各向同性材料的Mises准则同构,进而建立了混合硬化正交各向异性材料的增量型弹塑性损伤本构方程和损伤演化方程.基于经典非线性板理论,得到了考虑损伤效应的正交各向异性板的增量型非线性平衡方程,且采用有限差分法和迭代法进行求解.数值算例中,讨论了损伤演化、初始缺陷对正交各向异性板弹塑性后屈曲行为的影响.数值结果显示了弹塑性后屈曲与弹性后屈曲的不同,并且损伤和损伤演化对板的弹塑性后屈曲的影响不可忽略.  相似文献   

11.
Based on recent experimental observations on the formation of localization before delamination, a bifurcation-based decohesion approach is proposed in this paper to simulate the transition from localization to decohesion involved in the delamination process of compressed films. The onset and orientation of discontinuous failure are identified from the discontinuous bifurcation analysis. A discrete constitutive model is then formulated based on the bifurcation analysis to predict the evolution of material failure as decohesion or separation of continuum. The Material Point Method, that does not employ fixed mesh-connectivity, is developed as a robust spatial discretization method to accommodate the multi-scale discontinuities involved in the film delamination. To demonstrate the potential of the proposed approach, a parametric study is conducted to explore the effects of aspect ratio and failure mode on the evolution of failure patterns under different boundary conditions, which provides a better understanding on the physics behind the film delamination process.Received: January 16, 2003; revised: August 11, 2003  相似文献   

12.
《Applied Mathematical Modelling》2014,38(15-16):3958-3967
This paper investigates the relation between the uncertain mechanical properties of wood and its extensibility at the ultrastructural scale. A statistical approximation to the output of a multi-scale constitutive model is adopted to predict the extensibility of wood in the presence of parametric uncertainty. By means of this procedure, a very large number of computationally intensive fully-coupled multi-scale simulations are avoided. Following this approach, four different micromechanical parameters are chosen to assess their influence on the extensibility of the material under tensile loading conditions. These are the degree of cellulose crystallinity, the ultimate strain and Young’s modulus of the hemicellulose–lignin matrix, and the thickness of the amorphous cellulose layer which covers the periodic crystalline portions of cellulose. We believe that a better understanding of the mechanisms of deformation and extensibility in wood and in natural materials can pave the way for the development of new strategies to design more advanced materials in engineering structures.  相似文献   

13.
研究了考虑损伤效应的粘弹性矩形板在横向周期载荷作用下的非线性动力学问题.基于Von Karman方程、Boltzmann叠加原理和连续损伤力学理论,建立了以中面位移表示的考虑损伤效应的粘弹性薄板的非线性动力学方程,然后,应用有限差分法和Newmark法进行求解,并与相应的文献作出了比较.具体讨论了外载荷参数和板的几何尺寸对含损伤效应的粘弹性板非线性动力响应的影响.数值结果表明,考虑损伤效应时,结构的非线性动力响应会发生显著的变化.  相似文献   

14.
Yevgen Gorash  Holm Altenbach 《PAMM》2011,11(1):373-374
The purpose of this work is to extend a typical creep-damage model in order to describe material behavior under variable thermal and mechanical loading in wide stress range. The model basis is creep constitutive law in form of hyperbolic sine stress response function proposed by Nadai. The constitutive law is extended to assume the damage process under creep and fatigue by the introduction of scalar damage parameters and appropriate evolution equations according to Kachanov-Rabotnov concept. The material constants for model are identified by fitting the experimental creep and low-cycle fatigue data for the steel AISI type 316 at the range of temperatures 500°C – 750°C. The development of such model is motivated by the well described failure case study of high-temperature components at unit 1 of Eddystone power plant, which have operated during 130520 hours under creep-fatigue interaction conditions. The main steam piping (MSP) from this power plant is selected for thermo-mechanical creep-fatigue analysis applying the proposed material model. The estimated values of damage parameters comply with the real location of the component failure and a scatter of experimental data on creep-fatigue interaction diagram. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
当今海洋工程中广泛采用各种竖直轴对称结构,诸如贮油罐、采油平台等等。本文论述一种计算上述结构物与其周围的海洋相互作用的极其有效的计算方法,着重讨论如下几个问题的数值计算:1.作用在固定建筑物上的波浪荷载和爬高;2.作用在浮式建筑物上的附加质量、阻尼系数以及激荡力(扰动力);3.因地震荷载作用而产生的基面剪切力和转动力矩;4.浮式建筑物在波浪作用下的运动状态。本文所述方法是一种以轴对称格林函数为基础的边界单元法,并利用结构物本身的轴对称性提出了适用于小型计算机上进行快速有效计算的计算程序。最后,作者给出了不同荷载对于伸出水面的截圆锥式建筑物的作用的计算结果。  相似文献   

16.
A microplane model is developed to simulate the behavior of concrete under cyclic loading conditions. Pure damage mechanics or pure plasticity models yield satisfactory results for concrete under monotonic loading but cannot capture correctly the unloading and reloading response. Therefore, coupling damage and plasticity is necessary for accurate constitutive modeling of concrete. The microplane model offers a straightforward approach to simulate induced anisotropy by formulating the material laws on many randomly oriented planes. Distinguishing between compression and tension response using the proper plastic yield function and damage laws is considered. Furthermore, gradient enhancement is employed to handle the pathological mesh sensitivity related to strain softening. The new formulation is implemented within a 3D finite element code and a numerical example is simulated and compared to experiments in order to evaluate the capabilities of the model. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In the present paper, the numerical damage assessment of the masonry bell tower called “Haghia Sophia” in Trabzon, Turkey is performed by nonlinear 3D finite element modeling. The behavior of bell tower is determined under several different conditions: nonlinear static analysis containing dead and wind loads and nonlinear seismic analysis. In addition to, an assessment of the tower’s stability with respect to the tilt of the tower is carried out by means of a nonlinear analysis. In the nonlinear dynamic analysis, the east–west component of 1992 Erzincan earthquake is used. Cracking and crushing of the masonry have been taken into account, as well as the influence of material nonlinearity. The numerical analysis has given a valuable picture of possible damage evolution, providing useful hints for the prosecution of structural monitoring. The displacement and stress fields, as well as the distribution of cracking have been calculated and compared to the actual distribution of fractures in the tower. It is seen from the numerical results that there is a good agreement with present damages of the bell tower.  相似文献   

18.
Mechanics of Composite Materials - A technique for the numerical analysis of nonlinear dynamic deformation and progressive failure of cylindrical glass-fiber plastic shells is developed with...  相似文献   

19.
20.
Enhanced numerical methods for the solution of three-dimensional nonlinear electromechanically coupled boundary value problems are considered. A vector potential finite element formulation with return mapping algorithm and consistent tangent operator is developed. The accuracy and robustness of the algorithms are assessed with the help of numerical examples concerning a ferroelectroelastic analysis of structures under complex multiaxial non-proportional loading. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号