首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ X-ray photoelectron spectroscopy (XPS) and ex situ atomic force microscopy (AFM) were used to study the growth of thin cobalt films at room temperature (RT) on both clean and H-terminated Si(0 0 1) and Si(1 1 1) surfaces. The growth proceeds by first forming an initial CoSi2-like phase at the growth front of the Si substrate. With increasing Co coverage the interfacial layer composition becomes richer in Co and eventually a metallic Co film is formed on top. Hydrogen termination of the Si surface did not suppress the reaction of Co and Si. A pseudo-layer-by-layer growth mode is proposed to describe the growth of Co on H-terminated Si surfaces, while closed-packed small island growth occurs on clean Si surfaces. The difference in growth mode can be attributed to the increase in the surface mobility of Co adatoms in the presence of hydrogen.  相似文献   

2.
We use ab initio calculations to investigate spin and orbital moments of 3d transition-metal adatoms and Co nanostructures on Cu(0 0 1) surfaces. For Fe and Co adatoms on Cu(0 0 1) we predict extremely large orbital moments, comparable to the spin moments at these sites. For Mn and Cr adatoms the orbital moments are extremely small and can be neglected in face of their rather large spin moments. Ni adatoms on Cu(0 0 1) were found to be non-magnetic. Our investigations for adsorbed flat clusters of Co on Cu(0 0 1) address the persistence and extent of these large orbital moments in the clusters as a function of their size. We find that, the average orbital moment (Morb) per Co atom is strongly correlated with the coordination number, decreasing drastically and monotonically as the average number of first Co neighbors around the sites in the cluster (NCo) is increased.  相似文献   

3.
Štěpán Pick 《Surface science》2007,601(23):5571-5575
The regular CO overlayers at coverage θ = 1/3 adsorbed on the (0 0 0 1) surface of hcp Co and (1 1 1) surface of fcc Co are studied by first-principles density-functional theory with the exchange-correlation component in the PBE form. Adsorption in atop, bridge, and three-fold hcp or fcc position are considered. The adsorption energies, CO stretching frequencies, geometry, work function, and local magnetic moments are studied, and, when possible, compared with experimental or theoretical data. Particularly, we show that the recently proposed correction to adsorption energy of CO prefers correctly the atop adsorption site, whereas the remaining sites are almost degenerate in energy. The CO molecule lowers magnetization on neighbouring Co atoms, and the effect decreases with the adsorption site coordination. We show, however, that this trend is not the result of the different C-Co separation at different adsorption sites. A very small magnetic moment appears on CO that couples antiferromagnetically to Co. Most results are very similar for the Co(0 0 0 1) and Co(1 1 1) surfaces.  相似文献   

4.
Following the experimental work of Groudeva-Zotova et al. [S. Groudeva-Zotova, D. Elefant, R. Kaltofen, D. Tietjen, J. Thomas, V. Hoffmann, C.M. Schneider, J. Magn. Magn. Mater. 263 (2003) 57] where the magnetic and structural characteristics of a bi-layer NiMn-Co exchange biasing systems was investigated, density functional calculations with generalized gradient corrections were performed on (Mn0.5Ni0.5)n ordered alloy on Co(0 0 1) and one Mn1−xNix monolayer on Co(1 1 1). For the Mn0.5Ni0.5 monolayer on Co(0 0 1), magnetic moments per surface atom of 0.65 μB and 3.76 μB were obtained for Ni and Mn, respectively. Those magnetic moments are aligned parallel to the total moment of Co(0 0 1). A complex behavior of the Mn moment in dependence of the thickness “n” is obtained for (Mn0.5Ni0.5)n on Co(0 0 1). Investigations on Mn1−xNix monolayer on Co(1 1 1) have shown that the crystallographic orientation does not modify significantly neither the magnetic moments of Mn and Ni atoms nor their ferromagnetic coupling with the Co(1 1 1) substrate, except for x = 0.66. For x = 0.66 the Mn sub-lattice presents an antiferromagnetic coupling leading to a quenching of the Ni magnetic moment.  相似文献   

5.
Using a combination of molecular beam epitaxy and in situ surface X-ray diffraction, we investigate the nucleation and coarsening of monolayer high islands on GaSb(0 0 1) during deposition in real time. We find an activation energy for island nucleation of 1.55 ± 0.16 eV, indicating a stable nucleus size larger than two atoms. For intermediate temperatures where GaSb homoepitaxy is stable, the lateral coarsening of the islands after deposition is described by Ostwald ripening. The average island sizes during coarsening are isotropic, although with different size distributions in different directions. The size distributions do not change during coarsening, implying kinetic scaling.  相似文献   

6.
The formation of (1 1 1)-oriented Cu-clusters on ZnO(0 0 0 1)-Zn at room temperature is followed by in situ applied scanning tunneling microscopy. Kink-sites at step edges and especially the apexes of triangular ZnO-substrate terraces act as preferred nucleation sites. At room temperature the decay of small Cu-islands takes place on a time scale of minutes. Larger Cu-coverages lead to an ensemble of interconnected 3D-islands of uniform height separated by trenches down to the substrate. A disordered dislocation network is visible on top of the Cu-islands. Annealing leads to a piling up of the Cu-islands. An initially undisturbed ZnO-substrate in between the islands shows that there is no strong reaction between the Cu-clusters and the oxide at room temperature. A strong decrease of the adlayer coverage visible above the ZnO-substrate layer for annealing temperature above 570 K points to a partial entrenching of the islands into the oxide support and an alloy formation.  相似文献   

7.
We report on the growth of ultrathin epitaxial Co films on Fe(1 1 0) examined by scanning tunneling microscopy and spectroscopy (STM and STS). At room temperature Co forms pseudomorphic, ideally ordered body-centered cubic (bcc) layers for the first two monolayers as confirmed by atomically resolved STM images. This is in contrast to the related case of Co/Cr(1 1 0) where a superstructure occurs in the second layer. The third monolayer forms a close-packed structure and causes a transformation of the buried second monolayer into a close-packed structure. The Fe(1 1 0) substrate strongly influences the electronic structure of the first Co monolayer as concluded from the dI/dU spectra. This influence is less important for the second monolayer. The measured local density-of-states function for the bcc Co double layer is in agreement with theoretical predictions for bcc Co.  相似文献   

8.
In this paper we study nanocrystalline zinc oxide thin films produced by oxidation of electrodeposited zinc nanolayers on a monocrystalline p-Si(1 1 1) substrate.The electrolyte used is ZnCl2, an aqueous solution of 4 × 10−2 mol/l concentration. Several deposits were made for various current densities, ranging from 13 mA/cm2 to 44 mA/cm2, flowing through the solution at room temperature. A parametric study enabled us to assess the effect of the current density on nucleation potential and time as well as zinc films structure. The grazing incidence X-ray diffraction (GIXD) revealed that both Zn and ZnO films are polycrystalline and nanometric. After 1-h oxidation of zinc films at 450 °C in the open air, the structural analyses showed that the obtained ZnO films remained polycrystalline with an average crystal size of about 47 nm and with (1 0 0), (0 0 2) and (1 0 1) as preferential crystallographic orientations.  相似文献   

9.
Influences of oxygen exposure on the magnetic properties of Co/Ge(1 1 1) ultrathin films have been investigated by surface magneto-optic Kerr effect technique. As the oxygen exposure increases on Co/Ge(1 1 1) films, their magnetic properties could be modified. As an example for 15 ML Co/Ge(1 1 1) films, the coercivity increases from 730 to 920 Oe and the remanence Kerr intensity is reduced for 500 Langmuir (L) of oxygen exposure. Corresponding compositions analyzed by Auger electron spectroscopy measurement shows that the amount of oxygen on the surface layers increases with increasing the oxygen exposure time. Oxygen distributes on the topmost layers of the film. The adsorbed oxygen influences the electronic density of states of Co and results in the changes of the magnetic properties. Besides, the appearance of O/Co/Ge interface could modify the stress anisotropy, and as a result the coercivity of ultrathin Co/Ge(1 1 1) film is enhanced.  相似文献   

10.
Electrodeposition is used to produce epitaxial single-crystal films on Au(1 1 1) substrates without annealing or other post-deposition modification. X-ray techniques show that the Bi(0 1 2) plane is parallel to the underlying Au(1 1 1) surface, and the azimuthal orientation of the films is determined. Combination of the X-ray data with in situ scanning tunneling microscopy (STM) images suggests a common growth mode from the first few layers up to thick films.  相似文献   

11.
By means of tight-binding molecular-dynamics simulations, Co adatom and dimer migration on a Pt(1 1 1) surface is investigated. Combining static and dynamic calculations, activation energies associated to these processes are determined. Since the size mismatch between Co and Pt is large, the presented simulations provide an illustration of the way in which growth can be affected by size effects in heteroepitaxy. In particular an increase of the mobility is found for Co dimers (heteroepitaxy) relatively to Pt ones (homoepitaxy).  相似文献   

12.
H.Y. Ho 《Surface science》2006,600(5):1093-1098
Low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES) were used to study the growth and the structural evolution of Ni/Co/Pt(1 1 1) following high-temperature annealing. From the oscillation of the specular beam of the LEED and Auger uptake curve, we concluded that the growth mode of thin Ni films on 1 ML Co/Pt(1 1 1) is at least 2 ML layer-by-layer growth before three-dimensional island growth begins. The alloy formation of Ni/1 ML Co/Pt(1 1 1) was analyzed by AES. The temperature for the intermixing of Ni and Co layers in the upper interface without diffusing into the bulk of Pt is independent of the thickness of Ni when a Co buffer is one atomic monolayer. After the temperature was increased, formations of Ni-Co-Pt alloy, Ni-Pt alloy and Co-Pt alloy were observed. The temperature required for the Ni-Co intermixing layer to diffuse into Pt bulk increases with the thickness of Ni. The interlayer distance as a function of annealing temperature for 1 ML Ni/1 ML Co/Pt(1 1 1) was calculated from the I-V LEED. The evolution of LEED patterns was also observed at different annealing temperatures.  相似文献   

13.
CO adsorption on a sulfur covered cobalt surface at 185 K has been studied using XPS, TDS, LEED, and WF measurements. As in the case of CO adsorption on the clean Co(0 0 0 1) surface, CO adsorbs and desorbs molecularly and no dissociation was observed. The saturation coverage of CO decreases linearly from 0.54 ML to 0.27 ML when the S pre-coverage increases to 0.25 ML. The WF increased during CO adsorption, but did not reach the value obtained for CO adsorption on the clean surface. The smaller work function change is explained by the reduced adsorption of CO on the sulfur-precovered surface. A reduction in the activation energy of desorption for CO from 113 kJ/mol to 88 kJ/mol was observed indicating weaker bonding of the CO molecules to the surface. The behavior of the CO/S/Co(0 0 0 1) system was explained by a combination of steric and electronic effects.  相似文献   

14.
We present and discuss X-ray absorption spectroscopy and resonant photoemission measurements on Fe nanostructures self-assembled on MgO(0 0 1). For Fe coverages below 1 ML equivalent we measured an increase of the Fe L23 branching ratio and changes in the splitting, widths and relative intensities of the different final states in the L3M23M23 resonant Auger peak. Scanning tunnelling microscopy indicates that the average lateral dimensions of the self-aggregated structures decrease with decreasing Fe amount, from 12 nm at 15 ML nominal Fe amount to 5 nm at 2 ML Fe. This observation allows to interpret the observed changes in the 3d band electronic properties in terms of the evolution of the Fe local atomic coordination from a bulk-like situation to a configuration where low dimensionality effects are significant.  相似文献   

15.
H.Y. Ho 《Surface science》2007,601(3):615-621
The initial growth and alloy formation of ultrathin Co films deposited on 1 ML Ni/Pt(1 1 1) were investigated by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and ultraviolet photoelectron spectroscopy (UPS). A sequence of samples of dCo Co/1 ML Ni/Pt(1 1 1) (dCo = 1, 2, and 3 ML) were prepared at room temperature, and then heated up to investigate the diffusion process. The Co and Ni atoms intermix at lower annealing temperature, and Co-Ni intermixing layer diffuses into the Pt substrate to form Ni-Co-Pt alloys at higher annealing temperature. The diffusion temperatures are Co coverage dependent. The evolution of UPS with annealing temperatures also shows the formation of surface alloys. Some interesting LEED patterns of 1 ML Co/1 ML Ni/Pt(1 1 1) show the formation of ordered alloys at different annealing temperature ranges. Further studies in the Curie temperature and concentration analysis, show that the ordered alloys corresponding to different LEED patterns are NixCo1−xPt and NixCo1−xPt3. The relationship between the interface structure and magnetic properties was investigated.  相似文献   

16.
An atomically sharp interface between an antiferromagnetic oxide and a ferromagnetic metal may be obtained by the deposition of an epitaxial oxide buffer nanolayer in between. The buffer layer consists of the oxide of the ferromagnetic metal. The concept has been demonstrated on the NiO(1 0 0)-Co system, where the inclusion of a 1-2 ML CoO(1 0 0) interlayer inhibits the interfacial redox reaction which takes place between NiO and Co metal in the absence of the buffer layer.  相似文献   

17.
Au island nucleation and growth on a Si(1 1 1) 7 × 7 vicinal surface was studied by means of scanning tunneling microscopy. The surface was prepared to have a regular array of step bunches. Growth temperature and Au coverage were varied in the 255-430 °C substrate temperature range and from 1 to 7 monolayers, respectively. Two kinds of islands are observed on the surface: Au-Si reconstructed islands on the terraces and three-dimensional (3D) islands along the step bunches. Focusing on the latter, the dependence of island density, size and position on substrate temperature and on Au coverage is investigated. At 340 °C and above, hemispherical 3D islands nucleate systematically on the step edges.  相似文献   

18.
The crystalline structure of Co layers deposited on the Cu(0 0 1) surface was investigated with the use of the directional elastic peak electron spectroscopy (DEPES). For clean Cu(0 0 1) the experimental DEPES profiles obtained for different energies of the primary electron beam exhibit intensity maxima corresponding to the close packed rows of atoms. The Auger peak kinetics recorded during continuous Co deposition suggest the layer-by-layer growth mode. The DEPES profiles recorded for 10 monolayers (ML) of Co on Cu(0 0 1) reflect a short-range order in the adsorbate. Intensity maxima observed in the DEPES profiles for Co along [1 0 0], [0 1 0], and [1 1 0] azimuths of Cu(0 0 1) are characteristic of the face centered cubic (fcc) Co(0 0 1) layers. Low-intensity reflections and considerable background intensities were found in the low energy electron diffraction (LEED) patterns recorded from 10 ML of Co, which indicates a weak long-range order in the adsorbate. The adsorption of about 20 ML of Co results in considerable background contribution to DEPES. No reflections but a large background were observed with the use of LEED for this layer. The heating of the Co/Cu(0 0 1) system at T = 770 K leads to an increase of the short- and long-range order in the overlayer, observed in the DEPES profiles and LEED patterns, respectively. The theoretical DEPES profiles were obtained with the use of a multiple scattering approximation. A very good agreement between experimental and theoretical scans was found for the clean and covered copper substrate. The latter proves the epitaxial growth of Co layers on Cu(0 0 1).  相似文献   

19.
The magnetic properties of Co nanostructures and a Co monolayer on W(0 0 1) have been studied in the framework of density functional theory. Different geometries such as planar and three-dimensional clusters have been considered, with cluster sizes varying between 2 and 13 atoms. The calculations were performed using the real-space linear muffin-tin orbital method (RS-LMTO-ASA). With respect to the stability of the magnetic state, we predict an antiferromagnetic (AFM) structure for the ground state of the planar Co clusters and a ferromagnetic (FM) state for the three-dimensional clusters. For the three-dimensional clusters, one of the AFM arrangements leads to frustration due to the competing FM and AFM exchange interactions between different atoms in the cluster, and gives rise to a non-collinear state with energy close to that of the FM ground state. The relative role of the Co–Co and Co–W exchange interactions is also investigated.  相似文献   

20.
R. Zdyb  A. Pavlovska  E. Bauer 《Surface science》2006,600(8):1586-1591
The magnetic domain structure of Fe wires, ribbons and islands with different shapes that have been prepared under ultra high vacuum conditions on W(1 1 0) are studied with spin polarized low energy electron microscopy. The dimensions of the nanostructures, which are of the order of tens and hundreds of nm, can be controlled by the temperature at which they are produced, by the average Fe coverage and by the substrate morphology. The domain structure of the nanostructures depends on their shape and is determined by the competition between magnetoelastic, shape and magnetocrystalline anisotropies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号