首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. Dong 《Applied Surface Science》2009,255(15):7051-7055
Dispersible SiO2 nanoparticles were co-deposited with electroless Ni-P coating onto AISI-1045 steel substrates in the absence of any surfactants in plating bath. The resulting Ni-P/nano-SiO2 composite coatings were heat-treated for 1 h at 200 °C, 400 °C, and 600 °C, respectively. The hardness and wear resistance of the heat-treated composite coatings were measured. Moreover, the structural changes of the composite coatings before and after heat treatment were investigated by means of X-ray diffraction (XRD), while their elemental composition and morphology were analyzed using an energy dispersive spectrometer (EDS) and a scanning electron microscope (SEM). Results show that co-deposited SiO2 particles contributed to increase the hardness and wear resistance of electroless Ni-P coating, and the composite coating heat-treated at about 400 °C had the maximum hardness and wear resistance.  相似文献   

2.
Neodymium doped strontium gallogermanate crystals were grown successfully by the Bridgman technique. The linear thermal expansion coefficients for the c- and a-axes were measured as 5.8 × 10−6 °C−1 and 6.5 × 10−6 °C−1. Absorption spectra, and fluorescence spectra, as well as fluorescence decay curves of Nd3+-doped Sr3Ga2Ge4O14 crystal, have been recorded at room temperature and used to calculate the absorption and stimulated emission cross-sections. Based on the Judd-Ofelt theory, three intensity parameters were obtained. The luminescent quantum efficiency of the 4F3/2 level was determined to be approximately 73.8% for this material. Compared with other Nd3+-doped laser crystals, Nd3+-doped Sr3Ga2Ge4O14 crystal displays special laser properties due to its disorder structure.  相似文献   

3.
To study surface behaviors, MgFe2O4 ferrite materials having different grain sizes were synthesized by two different chemical methods, i.e., a polymerization method and a reverse coprecipitation method. The single phase of the cubic MgFe2O4 was confirmed by the X-ray diffraction method for both the precursors decomposed at 600-1000 °C except for a very small peak of Fe2O3 was detected for the samples calcined at 600 and 700 °C by the polymerization method. The crystal size and particle size increased with an increase in the sintering temperature using both methods. The conductance of the MgFe2O4 decreased when the atmosphere was changed from ambient air to air containing 10.0 ppm NO2. The conductance change, C = G(air)/G(10 ppm NO2), was reduced with an increase in the operating temperature. For the polymerization method, the maximum C-value was ca. 40 at 300 °C for the samples sintered at 900 °C. However, the samples sintered at 1000 °C showed a low conductance change in the 10 ppm NO2 gas, because the ratio of the O2 gas adsorption sites on the particle surface is smaller than those of the samples having a high C-value. The low Mg content on the surface affects the low ratio of the gas adsorption sites. For the reverse coprecipitation method, the particle size was smaller than that of the polymerization method. Although a stable conductance was obtained for the sample sintered at 900 and 1000 °C, its conductance change was less than that of the polymerization method.  相似文献   

4.
Evolution of tribological properties of electroless Ni-P and Ni-P-Al2O3 coating on an Al-10Si-0.3Mg casting alloy during heat treatment is investigated in this work. The pre-treated substrate was plated using a bath containing nickel hypophosphite, nickel lactate and lactic acid. For preparation of fiber-reinforced coating Al2O3 Saffil fibers pre-treated in demineralised water were used. The coated samples were heat treated at 400-550 °C/1-8 h. Tribological properties were studied using the pin-on-disc method. It is found that the best coating performance is obtained using optimal heat treatment regime (400 °C/1 h). Annealing at higher temperatures (450 °C and above) leads to the formation of intermetallic compounds that reduce the coating wear resistance. The reason is that the intermetallic phases adversely affect the coating adherence to the substrate. The analysis of wear tracks proves that abrasion is major wear mechanism, however due to the formed intermetallic sub-layers, partial coating delamination may occur during the pin-on-disc test on the samples annealed at 450 °C and above. It was found that fiber reinforcement reduces this scaling and increases wear resistance of coatings as compared to the non-reinforced Ni-P coatings.  相似文献   

5.
The solid solution behavior of the Ni(Fe1−nCrn)2O4 spinel binary is investigated in the temperature range 400-1200 °C. Non-ideal solution behavior, as exhibited by non-linear changes in lattice parameter with changes in n, is observed in a series of single-phase solids air-cooled from 1200 °C. Air-annealing for 1 year at 600 °C resulted in partial phase separation in a spinel binary having n=0.5. Spinel crystals grown from NiO, Fe2O3 and Cr2O3 reactants, mixed to give NiCrFeO4, by Ostwald ripening in a molten salt solvent, exhibited single-phase stability down to about 750 °C (the estimated consolute solution temperature, Tcs). A solvus exists below Tcs. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n values of 0.2 and 0.7 at 300 °C. The extrapolated solvus is shown to be consistent with that predicted using a primitive regular solution model in which free energies of mixing are determined entirely from changes in configurational entropy at room temperature.  相似文献   

6.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

7.
In order to improve the high-temperature wear resistance of austenitic stainless steel, a wear resistant composite coating reinforced with hard (Cr,Fe)7C3 carbide and toughened by ductile γ-(Ni,Fe)/(Cr,Fe)7C3 eutectic matrix was fabricated by a novel central hollow laser cladding technique. The constituent phases and microstructure as well as high-temperature tribological behaviors of the Ni-based coating were investigated, respectively, and the corresponding wear mechanisms were discussed. It has been found that the composite coating exhibits superior wear resistance than substrate either at ambient or high temperatures. The coating shows better sliding wear resistance at 600 °C than 300 °C owing to high-temperature stability of the reinforced carbide and polishing effect as well as formation of continuous lubricious films, which implied it has large potential industrial applications at relatively higher temperatures.  相似文献   

8.
In this work we report the optical, morphological and structural characterization and diode application of Cr2O3 nanofilms grown on p-Si substrates by spin coating and annealing process. X-ray diffraction (XRD), non-contact mode atomic force microscopy (NC-AFM), ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy were used for characterization of nanofilms. For Cr2O3 nanofilms, the average particle size determined from XRD and NC-AFM measurements was approximately 70 nm. Structure analyses of nanofilms demonstrate that the single phase Cr2O3 on silicon substrate is of high a crystalline structure with a dominant in hexagonal (1 1 0) orientation. The morphologic analysis of the films indicates that the films formed from hexagonal nanoparticles are with low roughness and uniform. UV-vis absorption measurements indicate that the band gap of the Cr2O3 film is 3.08 eV. The PL measurement shows that the Cr2O3 nanofilm has a strong and narrow ultraviolet emission, which facilitates potential applications in future photoelectric nanodevices. Au/Cr2O3/p-Si metal/interlayer/semiconductor (MIS) diodes were fabricated for investigation of the electronic properties such as current-voltage and capacitance-voltage. Ideality factor and barrier height for Au//Cr2O3/p-Si diode were calculated as 2.15 eV and 0.74 eV, respectively. Also, interfacial state properties of the MIS diode were determined. The interface-state density of the MIS diode was found to vary from 2.90 × 1013 eV−1 cm−2 to 8.45 × 1012 eV−1 cm−2.  相似文献   

9.
The influence of substrate temperature on structural and dielectric properties of cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 (BZN) thin films prepared by pulsed laser deposition process has been investigated. BZN thin films were deposited on Pt/Ti/SiO2/Si(1 0 0) substrate and in situ annealed at 700 °C. The results indicate that the substrate temperature has a significant effect on the structural and dielectric properties of BZN thin films. The films exhibit a cubic pyrochlore structure in the substrate temperature range from 550 °C to 700 °C and at the annealing temperature of 700 °C. With further increase of substrate temperature to 750 °C, the phases of Bi2O3, BiNbO4 and Bi5Nb3O15 can be detected in the XRD pattern due to the Zn loss. The dielectric constant and loss tangent of the films deposited at 650 °C are 192 and 6 × 10−4 at 10 kHz, respectively. The tunability is 10% at a dc bias field of 0.9 MV/cm.  相似文献   

10.
In this paper, TaxC1−x coatings were deposited on 316L stainless steel (316L SS) by radio-frequency (RF) magnetron sputtering at various substrate temperatures (Ts) in order to improve its corrosion resistance and hemocompatibility. XRD results indicated that Ts could significantly change the microstructure of TaxC1−x coatings. When Ts was <150 °C, the TaxC1−x coatings were in amorphous condition, whereas when Ts was ≥150 °C, TaC phase was formed, exhibiting in the form of particulates with the crystallite sizes of about 15-25 nm (Ts = 300 °C). Atomic force microscope (AFM) results showed that with the increase of Ts, the root-mean-square (RMS) values of the TaxC1−x coatings decreased. The nano-indentation experiments indicated that the TaxC1−x coating deposited at 300 °C had a higher hardness and modulus. The scratch test results demonstrated that TaxC1−x coatings deposited above 150 °C exhibited good adhesion performance. Tribology tests results demonstrated that TaxC1−x coatings exhibited excellent wear resistance. The results of potentiodynamic polarization showed that the corrosion resistance of the 316L SS was improved significantly because of the deposited TaxC1−x coatings. The platelet adhesion test results indicated that the TaxC1−x coatings deposited at Ts of 150 °C and 300 °C possessed better hemocompatibility than the coating deposited at Ts of 25 °C. Additionally, the hemocompatibility of the TaxC1−x coating on the 316L SS was found to be influenced by its surface roughness, hydrophilicity and the surface energy.  相似文献   

11.
Cycle oxidation resistance at 800 °C in static air was investigated for a nanostructured Ni60-TiB2 composite coating sprayed by high velocity oxy-fuel (HVOF). For comparison, a Ni60-TiB2 conventional composite coating was also studied. The results indicate that, the oxidation processes of both composite coatings are controlled by diffusion mechanism, and the nanostructured composite coating has better cycle oxidation resistance than that of the conventional composite coating. The reasons for this improvement can be attributed to the formation of the intact SiO2 and Cr2O3 protective layer, and the enhanced adhesion between oxide film and nanostructure coating.  相似文献   

12.
GaSb(0 0 1) was treated with (NH4)2Sx and the evolution of the interfacial chemistry was investigated, in situ, with monochromatic X-ray photoelectron spectroscopy (XPS), following heat treatment and exposure to trimethylaluminum (TMA) and deionized water (DIW) in an atomic layer deposition reactor. Elemental Sb (Sb-Sb bonding) as well as Sb3+ and Sb5+ chemical states were initially observed at the native oxide/GaSb interface, yet these diminished below the XPS detection limit after heating to 300 °C. No evidence of Ga-Ga bonding was observed whereas the Ga1+/Ga-S chemical state was robust and persisted after heat treatment and exposure to TMA/DIW at 300 °C.  相似文献   

13.
We deposited SrCu2O2 (SCO) films on sapphire (Al2O3) (0 0 0 1) substrates by pulsed laser deposition. The crystallographic orientation of the SCO thin film showed clear dependence on the growth temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis showed that the film deposited at 400 °C was mainly oriented in the SCO [2 0 0] direction, whereas when the growth temperature was increased to 600 °C, the SCO film showed a dominant orientation of SCO [1 1 2]. The SCO film deposited at 500 °C was obvious polycrystalline, showing multi peaks from (2 0 0), (1 1 2), and (2 1 1) diffraction in the XRD spectrum. The SCO film deposited at 600 °C showed a band gap energy of 3.3 eV and transparency up to 80% around 500 nm. The photoluminescence (PL) spectra of the SCO films grown at 500 °C and 600 °C mainly showed blue-green emission, which was attributed to the intra-band transition of the isolated Cu+ and Cu+–Cu+ pairs according to the temperature dependent-PL analysis.  相似文献   

14.
The Fe63B23Nd7Y3Nb3Cr1 nanocomposite magnets in the form of sheets have been prepared by copper mold casting technique. The phase evolution, crystal structure, microstructural and magnetic properties have been investigated in the as-cast and annealed states. The as-cast sheets show magnetically soft behaviors which become magnetically hard by thermal annealing. The optimal annealed microstructure was composed of nanosize soft magnetic α-Fe (19-29 nm) and hard magnetic Nd2Fe14B (45-55 nm) grains. The best hard magnetic properties such as intrinsic coercivity, jHc of 1119 kA/m, remanence, Br of 0.44 T, magnetic induction to saturation magnetization ratio, Mr/Ms=0.61 and maximum energy product, (BH)max of 55 kJ/m3 was obtained after annealing at 680 °C for 15 min. The annealing treatment above 680 °C results in non-ideal phase grains growth, which degrade the magnetic properties.  相似文献   

15.
The impact of the ZrO2/La2O3 film thickness ratio and the post deposition annealing in the temperature range between 400 °C and 600 °C on the electrical properties of ultrathin ZrO2/La2O3 high-k dielectrics grown by atomic layer deposition on (1 0 0) germanium is investigated. As-deposited stacks have a relative dielectric constant of 24 which is increased to a value of 35 after annealing at 500 °C due to the stabilization of tetragonal/cubic ZrO2 phases. This effect depends on the absolute thickness of ZrO2 within the dielectric stack and is limited due to possible interfacial reactions at the oxide/Ge interface. We show that adequate processing leads to very high-k dielectrics with EOT values below 1 nm, leakage current densities in the range of 0.01 A/cm2, and interface trap densities in the range of 2-5 × 1012 eV−1 cm−2.  相似文献   

16.
Be3N2 thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 °C, 400 °C, 600 °C and 700 °C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 °C and 700 °C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be3N2 stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 °C or 700 °C. However, the samples grown at RT and annealed at 600 °C or 700 °C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 °C, and the sample annealed in situ at 600 °C were amorphous; while the αBe3N2 phase was presented on the samples with a substrate temperature of 600 °C, 700 °C and that deposited with the substrate at RT and annealed in situ at 700 °C.  相似文献   

17.
Physicochemical, surface and catalytic properties of pure and doped CuO/Fe2O3 system were investigated using X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), nitrogen adsorption at −196 °C and CO-oxidation by O2 at 80-220 °C using a static method. The dopants were Li2O (2.5 mol%) and CoO (2.5 and 5 mol%). The results revealed that the increase in precalcination temperature from 400 to 600 °C and Li2O-doping of CuO/Fe2O3 system enhanced CuFe2O4 formation. However, heating both pure and doped solids at 600 °C did not lead to complete conversion of reacting oxides into CuFe2O4. The promotion effect of Li2O dopant was attributed to dissolution of some of dopant ions in the lattices of CuO and Fe2O3 with subsequent increase in the mobility of reacting cations. CoO-doping led also to the formation of mixed ferrite CoxCu1−xFe2O4. The doping process of the system investigated decreased to a large extent the crystallite size of unreacted portion of Fe2O3 in mixed solids calcined at 600 °C. This process led to a significant increase in the SBET of the treated solids. Doping CuO/Fe2O3 system with either Li2O or CoO, followed by calcination at 400 and 600 °C decreased its catalytic activity in CO-oxidation by O2. However, the activation energy of the catalyzed reaction was not much affected by doping.  相似文献   

18.
The effect of the heat treatment on the corrosion behaviour of amorphous Fe85Cr5P6C3Si alloy in 0.5 M H2SO4 has been investigated using electrochemical techniques. Heat treatment was carried out at temperatures varying between 250 and 650 °C at different times 30, 60, 120 and 240 min. The evolution of crystallization processes after annealing was identified by differential thermal analysis (DTA) and by X-ray diffraction (XRD). The diagrams obtained by DTA show that the structure of samples treated at high temperature changes towards a crystalline state. This crystallization phenomenon is confirmed by the analysis with the XRD. The results obtained from the polarization curves reveal that for all the studied temperatures of annealing, Fe-Cr-P-C-Si exhibits a phenomenon of passivation without breakdown of passivity. The best corrosion resistance is obtained at the temperature of annealing 350 °C. For an annealing at higher temperatures, Fe85Cr5P6C3Si becomes less corrosion resistant than same amorphous alloy treated with temperatures lower than 350 °C.  相似文献   

19.
The electrical as well as the structural properties of La2O3 thin films on TiN substrates were investigated. Amorphous stoichiometric La2O3 thin films were grown at 300 °C via atomic layer deposition technique by using lanthanum 2,2,6,6-tetramethyl-3,5-heptanedione [La(TMHD)3] and H2O as precursors. Post-annealing of the grown film induced dramatic changes in structural and the electrical properties. Crystalline phases of the La2O3 film emerged with the increase of the post-annealing temperature. Metal-insulator-metal (MIM) capacitor was fabricated to measure the electrical properties of the grown film. The dielectric constant of the La2O3 thin films increased with annealing temperature to reach the value of 17.3 at 500 °C. The leakage current density of the film post-annealed at 400 °C was estimated to be 2.78 × 10−10 and 2.1 × 10−8 A/cm2 at ±1 V, respectively.  相似文献   

20.
Lithium borate (Li2B4O7) is a low Zeff, tissue equivalent material that is commonly used for medical dosimetry using the thermoluminescence (TL) technique. Nanocrystals of lithium borate were synthesized by the combustion method for the first time in the laboratory. TL characteristics of the synthesized material were studied and compared with those of commercially available microcrystalline Li2B4O7. The optimum pre-irradiation annealing condition was found to be 300 °C for 10 min and that of post-irradiation annealing was 300 °C for 30 min. The synthesized Li2B4O7 nanophosphor has very poor sensitivity for low doses of gamma up to 101 Gy whereas from 101 to 4.5×102 Gy this phosphor exhibits a linear response and then from 4.5×102 to 103 Gy it shows supralinearity. Thermoluminescence properties of Li2B4O7 nanophosphor doped with Cu has also been investigated in this paper. It shows low fading and a linear response over a wide range of gamma radiation from 1×102 to 5×103 Gy. Therefore the synthesized lithium borate nanophosphor doped with Cu may be used for high dose measurements of gamma radiations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号