首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ultrasonics sonochemistry》2014,21(6):1964-1968
Through an ultrasound assisted method, TiO2/WO3 nanoparticles were synthesized at room temperature. The XRD pattern of as-prepared TiO2/WO3 nanoparticles matches well with that of pure monoclinic WO3 and rutile TiO2 nanoparticles. TEM images show that the prepared TiO2/WO3 nanoparticles consist of mixed square and hexagonal shape particles about 8–12 nm in diameter. The photocatalytic activity of TiO2/WO3 nanoparticles was tested for the degradation of a wastewater containing methylene blue (MB) under visible light illumination. The TiO2/WO3 nanoparticles exhibits a higher degradation rate constant (6.72 × 10−4 s−1) than bare TiO2 nanoparticles (1.72 × 10−4 s−1) under similar experimental conditions.  相似文献   

2.
In this paper, ZnO/Graphene Oxide (ZnO/GO) is synthesized via ultrasound assisted precipitation method and the effect of power and ultrasound time irradiation is studied on photocatalyst properties. The synthesized samples are used for methylene blue (MB) degradation as an organic water pollutant. Physicochemical properties of the samples are investigated by XRD, FESEM, EDX, BET-BJH, FTIR and DRS techniques. Moreover, pHpzc of the sample with the best performance is calculated to study the effect of acidity on the photocatalyst efficiency in photocatalytic process. Ultrasound has a positive effect on photocatalyst performance that is because of its effect on distribution of particles and semiconductor band gap, but it has no effect on photostability of the nanocomposite. Sonication has modified distribution of particles by enhancing the active sites for oxidation process. Making structural gaps by ultrasound irradiation increases available surface area which has a similar effect on photocatalyst performance. Graphene oxide as electron collector and transporter prevents electron-hole recombination and it can be an acceptable reason for enhancement at photocatalyst performance. Finally, some of operational parameters such as pH, photocatalyst loading and dye concentration are investigated.  相似文献   

3.
A multilayer photocatalytic TiO2 coating on a high-density polyethylene (HDPE) disk was found to degrade aqueous methylene blue in a batch reactor study. The TiO2 coating was fabricated by a low-temperature method using polyurethane resin (PU) as a barrier layer for HDPE and as a binding agent for two TiO2 layers. Adequate adhesion between the HDPE substrate and PU barrier in aqueous environment was ensured with an oxygen plasma treatment.The photocatalytic effect of immersed TiO2 coating on the degradation of methylene blue in aqueous solution was monitored by UV–vis spectrometry as a function of UV-illumination time. Samples were allowed to adsorb methylene blue in the dark for 1 h before the UV-degradation experiments were started. The percentages of methylene blue degraded during 6 h UV illumination (λ = 365 nm) varied from 80% to 92%. The degradation followed pseudo-first order reaction kinetics, and the observed rate constants (kobs) were between 0.27 and 0.43 h−1.  相似文献   

4.
In this study, a new hierarchical nanostructure that consists of zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, zinc acetate dihydrate and poly(vinyl alcohol) was performed to produce polymeric nanofibers embedding solid nanoparticles. Calcination of the obtained electrospun nanofiber mats in air at 500 °C for 90 min produced pure ZnO nanofibers with rough surfaces. The rough surface strongly enhanced outgrowing of ZnO nanobranches when a specific hydrothermal technique was used. Methylene blue dihydrate was used to check the photocatalytic ability of the produced nanostructures. The results indicated that the hierarchical nanostructure had a better performance than the other form.  相似文献   

5.
Cadmium selenide/graphene quantum dots (CdSe/GQDs) nanocatalyst with small band gap energy and a large specific surface area was produced via a facile three-step sonochemical-hydrothermal process. The features of the as-prepared CdSe, GQDs and CdSe/GQDs samples were characterized by photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), diffuse-reflectance spectrophotometer (DRS), and Brunauer–Emmett–Teller (BET) analysis. The sonocatalytic activity of the synthesized CdSe/GQDs was effectively accelerated compared with that of pure CdSe nanoparticles in degradation of methylene blue (MB). The influence of the CdSe/GQDs dosage (0.25–1.25 g/L), initial MB concentration (20–30 mg/L), initial solution pH (3–12), and ultrasonic output power (200–600 W/L) were examined on the sonocatalytic treatment of MB aqueous solutions. The degradation efficiency (DE%) of 99% attained at 1 g/L of CdSe/GQDs, 20 mg/L of MB, pH of 9, and an output power of 200 W/L at 90 min of ultrasonic irradiation. Furthermore, DE% increased with addition of K2S2O8 and H2O2 as the enhancers via producing more free radicals. However, addition of sulfate, carbonate, and chloride as radical sweeper decreased DE%. Furthermore, well-reusability of the CdSe/GQDs sonocatalyst was demonstrated for 5 successive runs and some of the sonocatalytic generated intermediates were indicated by GC–MS analysis.  相似文献   

6.
The antimicrobial finishing is a must for production of medical textiles, aiming at reducing the bioburden in clinical wards and consequently decreasing the risk of hospital-acquired infections. This work reports for the first time on a simultaneous sonochemical/enzymatic process for durable antibacterial coating of cotton with zinc oxide nanoparticles (ZnO NPs). The novel technology goes beyond the “stepwise” concept we proposed recently for enzymatic pre-activation of the fabrics and subsequent sonochemical nano-coating, and is designed to produce “ready-to-use” antibacterial medical textiles in a single step. A multilayer coating of uniformly dispersed NPs was obtained in the process. The enzymatic treatment provides better adhesion of the ZnO NPs and, as a consequence, enhanced coating stability during exploitation. The NPs-coated cotton fabrics inhibited the growth of the medically relevant Staphylococcus aureus and Escherichia coli respectively by 67% and 100%. The antibacterial efficiency of these textile materials resisted the intensive laundry regimes used in hospitals, though only 33% of the initially deposited NPs remained firmly fixed onto the fabrics after multiple washings.  相似文献   

7.
The present investigation reports the synthesis of CuBTC (BTC = 1,3,5-benzenetricarboxylate) metal–organic frameworks (MOFs) under solid-state conditions and ultrasound irradiation. Herein, we study uptake and release properties of crystal violet (CV) and methylene blue (MB) from ultrasound nano-CuBTC MOF in comparison with mechanosynthesis method (bulk structure). The ultrasound-assisted methods give a decrease in the surface area as calculated from the reduced nitrogen adsorption capability. In comparison, the uptake of guest molecules on ultrasound nano-CuBTC is remarkable and clearly exceeds that of bulk structure in the aqueous solution of guests. In bulk compound the channel length is increased so that the amount of adsorption is decreased a little. The small guest enters and leaves the cavity rapidly, whereas larger guests enter slowly due to their size relative to the size of the gaps in the capsule. As a result, the uptake and release of MB from CuBTC is faster than that of CV.  相似文献   

8.
A pulsed laser emitting UV radiations generated by the third harmonic of Nd:YAG was applied for the synthesis of nano-structured ZnO2 and ZnO. For the synthesis of nanoparticles of ZnO2, a high-purity metallic plate of Zn target was fixed at the bottom of a glass cell, in the presence of deionized water mixed with oxidizing agent H2O2, under repeated laser irradiation. The optical properties, size and the morphology of the synthesized ZnO2 and ZnO by laser ablation was influenced strongly by post-annealing conditions which is not previously reported. By annealing ZnO2 at 200 °C for 8 h, the product (ZnO2) synthesized primarily was converted completely to ZnO. By variation of the annealing temperatures from 200 to 600 °C, the grain size of ZnO changes from 5 to 19 nm with a change in lattice parameters, the band gap and some other optical properties of nano-ZnO.  相似文献   

9.
Dual-frequency ultrasonic assisted photocatalysis (DUAP) was proposed to enhance the degradation efficiency of methylene blue (MB) solution. The influence of operational parameters, i.e., irradiation time, ultrasonic arrangement, TiO2 concentration and power density, was studied. The results implied that the rapid degradation of MB solution was achieved in 18 min under DUAP with the dual frequencies of 20/40 kHz. Kinetic investigation of MB degradation for the DUAP process was conducted on the basis of first-order kinetic equation and the synergistic effect was assessed by examination of the apparent rate constant. The effect of ultrasonic arrangement was analyzed by comparison of the pressure amplitude of ultrasonic superposition field. The evolvement of intermediate products and the role of active species during DUAP were distinguished by UV-Vis spectra and the free radical scavenging experiment.  相似文献   

10.
Nanocrystalline zinc oxide (ZnO) particles with controlled shapes and sizes were prepared at 180 °C by a simple polyol method. The amount of water and the method of addition played an important role in determining the characteristics of the synthesized particles. Rod-shaped ZnO particles with major axis lengths of ∼114 nm were obtained by heating the precursor solution, while equiaxial particles with average diameters of ∼24 nm were prepared by injecting water into hot precursor solution. Increasing the amount of water added to the precursor solution enlarged the aspect ratio of the rod-shaped particles and increased the particle size of the equiaxial particles due to enhanced hydrolysis and condensation of the Zn ion complex.  相似文献   

11.
The simultaneous Ag loaded and N-doped TiO2 hollow nanorod arrays with various contents of silver (Ag/N-THNAs) were successfully synthesized on glass substrates by one-pot liquid phase deposition (LPD) method using ZnO nanorod arrays as template. The catalysts were characterized by Raman spectrum, field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscope (HRTEM), ultraviolet-vis (UV-vis) absorption spectrum and X-ray photoelectron spectroscopy (XPS). The results suggest that AgNO3 additive in the precursor solutions not only can promote the anatase-to-rutile phase transition, but also influence the amount of N doping in the samples. The photocatalytic activity of all the samples was evaluated by photodegradation of methylene blue (MB) in aqueous solution. The sample exhibited the highest photocatalytic activity under UV light illumination when the AgNO3 concentration in the precursor solution was 0.03 M, due to Ag nanoparticles acting as electron sinks; When the AgNO3 concentration was 0.07 M, the sample performed best under visible light illumination, attributed to the synergetic effects of Ag loading, N doping, and the multiphase structure (anatase/rutile).  相似文献   

12.
The photocatalytic degradation of methylene blue and 4-chlorophenol on nanocrystalline TiO2 (nc-TiO2) under UV irradiation was investigated by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Nanocrystalline TiO2 films were prepared from suspensions containing TiO2-crystallites of different average sizes, the smallest one being 12 nm. The organic substances (either methylene blue or 4-chlorophenol) were applied to these films. The specimens were studied in the pristine state and upon UV exposure. The UV illuminations were carried out both under atmospheric conditions and in situ under ultrahigh vacuum in the ToF-SIMS instrument. Distinct mass signals from the parent molecules and from fragment ions are observed for the as-prepared samples. Upon irradiation with UV light under atmospheric conditions, the surface composition is significantly changed, an observation ascribed to photocatalytic reactions induced by UV photons: the parent molecule signals are strongly diminished whereas fragmentation products are identified to be present at the TiO2 surfaces. UV irradiations carried out under different vacuum conditions in the ToF instrument (ultrahigh vacuum, air or oxygen adsorption) indicate that varying ambient conditions may influence the photocatalytic reaction on the nanocrystalline TiO2 films.  相似文献   

13.
李酽 《化学物理学报》2010,23(3):358-362
以氯化锌和硫酸钛为原料,通过湿化学法成功制备了钛掺杂氧化锌微米管. 以粉末X射线衍射仪、场发射扫描电子显微镜、光致发光系统对样品进行了表征. 结果表明,未经掺杂的氧化锌微管具有良好的六方中空结构. 在TiO2/ZnO比率小于5%时,钛掺杂和未掺杂氧化锌管具有相近的尺度,外表光滑,近于圆柱形. 当TiO2/ZnO比率大于5%时,生成一种由ZnO, Ti3O5和TiO组成的多相混合物. 钛掺杂氧化锌在光催化降解甲基橙溶液效果明显.  相似文献   

14.
《Ultrasonics sonochemistry》2014,21(4):1489-1495
Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range.  相似文献   

15.
Static and kinetic studies on adsorption of methylene blue on four synthesized mesoporous carbons are presented. The carbon properties are analyzed by means of nitrogen adsorption. The static experiments are analyzed by means of Langmuir-Freundlich and Freundlich isotherms. The Lagergren, pseudo-second-order and mixed order as well as the multi-exponent equations are used in analysis of kinetic equilibria. The properties of rate equations are compared and analyzed.  相似文献   

16.
In this study, Ag or Al-doped TiO2/ZnO heterostructure nanocatalysts were prepared using a sol-gel method for photocatalysis to evaluate the degradability. The photocatalytic behavior was evaluated by the degradation of methylene blue (MB) under ultraviolet (UV) light irradiation. Photocatalytic studies suggested that 1 mol% Ag-doped TiO2/ZnO (TiO2/ZnO = 0.75/0.25) heterostructure nanocatalysts showed higher photocatalytic activity, and that the degradation efficiency can reach 83% in 4 h, 14% higher than that for pure TiO2. Finally, the photocatalysis mechanism for the Ag-doped TiO2/ZnO heterostructure nanocatalysts is discussed.  相似文献   

17.
The photocatalytic degradation of methylene blue solution by 8 photocatalytic diphenylanthrazoline compounds was investigated. All diphenylanthrazoline compounds exhibited a good photocatalytic activity towards the methylene blue solution. The removal rate for chemical oxygen demand (CODCr) in the methylene blue solution at 12 hours was ~54.1% to 96.3%. 2,8‐Bis(4‐triphenylamino)‐4,6‐diphenyl‐1,9‐anthrazoline ( TM‐2‐d ) was selected for further investigation because of its better photocatalytic activity. To study the optimal reaction conditions for the photocatalytic degradation of dye wastewater, photocatalyst was applied to degrade methylene blue solution. The decolorization rate for simulated dye solutions can exceed 99% in 10 hours, and the CODCr removal rate exceeded 91%. These organic semiconductor materials, diphenylanthrazoline compounds, displayed comparative photocatalytic properties to the inorganic semiconductor materials, which can be used in the photocatalytic degradation of organic pollutants.  相似文献   

18.
Highly ordered mesoporous material MCM-41 was synthesized from tetraethylorthosilicate (TEOS) as Si source and cetyltrimethylammonium bromide (CTAB) as template. Well-dispersed NiO nanoparticles were introduced into the highly ordered mesoporous MCM-41 by chemical precipitation method to prepare the highly ordered mesoporous NiO/MCM-41 composite. X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and high-resolution TEM (HRTEM), and nitrogen adsorption–desorption measurement were used to examine the morphology and the microstructure of the obtained composite. The morphological study clearly revealed that the synthesized NiO/MCM-41 composite has a highly ordered mesoporous structure with a specific surface area of 435.9 m2 g−1. A possible formation mechanism is preliminary proposed for the formation of the nanostructure. The adsorption performance of NiO/MCM-41 composite as an adsorbent was further demonstrated in the removal azo dyes of methyl orange (MO), Congo red (CR), methylene blue (MB) and rhodaming B (RB) under visible light irradiation and dark, respectively. The kinetics and mechanism of removal methylene blue were studied. The results show that NiO/MCM-41 composite has a good removal capacity for organic pollutant MB from the wastewater under the room temperature. Compared with MCM-41 and NiO nanoparticles, 54.2% and 100% higher removal rate were obtained by the NiO/MCM-41 composite.  相似文献   

19.
Cu-doped ZnO nanoparticles were prepared by a sol-gel method for the first time. XRD, XPS, UV-vis and FS techniques were used to characterize the Cu-doped ZnO samples. The photocatalytic activity was tested for methyl orange degradation under UV irradiation. The results show that the crystal sizes of ZnO and 0.5% Cu/ZnO nanoparticles with wurtzite phase are 32.0 and 28.5 nm, indicating that Cu-doping hinder the growth of crystal grains. The doped Cu element existed as Cu2+. The optimal Cu doping concentration in ZnO is 0.5%. The optimal calcination condition is at 350 °C for 3 h. The MO degradation rate of 0.5% Cu/ZnO reaches 88.0% when initial concentration of MO is 20 mg/L, exceeding that of undoped ZnO. The enhanced charge carrier separation and increased surface hydroxyl groups due to Cu-doping contributed to the enhanced photocatalytic activity of 0.5% Cu/ZnO.  相似文献   

20.
In this study, new nanoscale photocatalyst based on silver and CNTs/TiO2 was successfully prepared by photoreduction method. The prepared Ag-CNTs/TiO2 was characterized by TEM, XRD and XPS. The photocatalytic activity was also evaluated by photocatalytic degradation of Reactive Brilliant Red X-3B dye. The results indicated that the photocatalytic efficiency of CNTs/TiO2 increased in the presence of Ag nanoparticles and the photocatalysis reaction followed a first order kinetics. The kinetic constant of Ag-CNTs/TiO2 for dye degradation was nearly 1.2 times than that of CNTs/TiO2, which indicated decorating Ag nanoparticles on CNTs/TiO2 could enhance the photocatalytic ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号