共查询到20条相似文献,搜索用时 15 毫秒
1.
Jinming LiuXiaoru Zhao Libing DuanMengmeng Cao Huinan SunJifeng Shao Shuai ChenHaiyan Xie Xiao ChangChangle Chen 《Applied Surface Science》2011,257(23):10156-10160
Nb-doped TiO2 (TNO) thin films were prepared by sol-gel dip-coating method with Nb content in a wide range of 0-20 at.%. The prepared films were preheated at 400 °C and then undertaken by two different post-annealing processes: (a) three times vacuum annealing and (b) multi-round annealing. The designed multi-round annealing was shown to be an effective way to improve the conductive properties of the films, compared to the traditional vacuum annealing process. The minimum resistivity reached approximately 0.5 Ω cm with Nb doping concentration around 12 at.%, and the carrier density increased with Nb-doping concentration until the critical point of 12 at.%, which might be the optimal doping content for our TNO films prepared by sol-gel method. 相似文献
2.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature. 相似文献
3.
This work presents the annealing temperature effect on the properties of mercury (Hg)-doped titanium dioxide (TiO2). Thin films and polycrystalline powders have been prepared by sol-gel process. The structure, surface morphology and optical properties, as a function of the annealing temperature, have been studied by atomic force microscopy (AFM), Raman, reflectance and ellipsometric spectroscopies. In order to determine the transformation points, we have analyzed the xerogel-obtained powder by differential scanning calorimetry (DSC). Raman spectroscopy shows the crystalline anatase and rutile phases for the films annealed at 400 °C and 1000 °C respectively. The AFM surface morphology results indicate that the particle size increases from 14 to 57 nm by increasing the annealing temperature. The complex index and the optical band gap (Eg) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreases by increasing the annealing temperature. 相似文献
4.
Previous studies suggest that granular interfaces induce a natural and persistent super-hydrophilicity in TiO2-SiO2 composite thin films deposited by sol-gel route. This effect enables to consider self-cleaning applications that do not require a permanent UV exposure, whereas such a permanent exposure is necessary for pure TiO2 films. In this study, TiO2-SiO2 composite thin films have been deposited from a TiO2 anatase crystalline suspension and different SiO2 polymeric sols. Wettability studies show that a suitable control of the TiO2-SiO2 mixed sol formulations noticeably enhances persistence of the natural super-hydrophilicity in composite films. It is shown that, beside granular interface effects, modifications in the composite film morphologies can noticeably influence wettability properties. 相似文献
5.
The continuous TiO2 fibers were prepared by sol-gel method using the tetrabutyl orthotitanate as the precursor. The sol-formation process is studied by FT-IR spectroscopy. The synthesized continuous TiO2 fibers were characterized using SEM, HRTEM and XRD. Results demonstrate that the titanate sol has good spinnability when R ≤ 2 (R = H2O:Ti(OC4H9)4, molar ratio). The fibers have the length of several meters and the diameter of about 30 μm. The fibers are a radial close-packed product of nano-particles with high crystallinity. The continuous TiO2 fibers are co-crystal including anatase phase and rutile phase. The formaldehyde degradation ratio of continuous TiO2 fiber was 98.6%. 相似文献
6.
Structure and photoluminescence properties of Er3+-doped TiO2-SiO2 powders prepared by sol-gel method 下载免费PDF全文
Er 3+-doped TiO 2-SiO 2 powders are prepared by the sol-gel method,and they are characterized by high resolution transmission electron microscopy (HR-TEM),X-ray diffraction (XRD) spectra,and Raman spectra of the samples.It is shown that the TiO 2 nanocrystals are surrounded by an SiO 2 glass matrix.The photoluminescence (PL) spectra are recorded at room temperature.A strong green luminescence and less intense red emission are observed in the samples when they are excited at 325 nm.The intensity of the emission,which is related to the defect states,is strongest at the annealing temperature of 800 C.The PL intensity of Er 3+ ions increases with increasing Ti/Si ratio due to energy transfer between nano-TiO 2 particles and Er 3+ ions. 相似文献
7.
Fluorinated TiO2 hollow microspheres with three-dimensional hierarchical architecture were prepared by solvothermally treatment using solid microspheres as precursor. The obtained solid and hollow TiO2 microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectra. The photocatalytic activity of as-prepared solid and hollow TiO2 microspheres was determined by degradation of methyl orange (MO) under visible light irradiation. The results showed that the surface fluorination, the existence of accessible mesopores channels, and the increased light harvesting abilities could remarkably improve the photocatalytic activity of TiO2 hollow microspheres. 相似文献
8.
Changyuan Hu Shuwang Duo Tingzhi Liu Junhuai Xiang Mingsheng Li 《Applied Surface Science》2011,257(8):3697-3701
Anatase TiO2 was prepared by a facile sol-gel method at low temperature through tailoring the pH of sol-gel without calcination. As a control, anatase TiO2 was also synthesized by the conventional sol-gel process, in which calcination at 500 °C was required to transform the amorphous oxide into highly crystalline anatase. As-prepared samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL). Their photocatalytic activities were evaluated by degradation of methyl orange under UV light irradiation. On the basis of experiment results, it could be concluded that TiO2 prepared by low temperature route showed more advantages in small particle size, highly dispersion nature, abundance of surface hydroxyl groups, strong PL signal, and high photocatalytic activity over TiO2 obtained by the conventional sol-gel process. Furthermore, the reason of the former possessing higher photocatalytic activity was discussed. 相似文献
9.
《Applied Surface Science》2011,257(9):4227-4231
TiO2 represents one of the most important sol-gel materials, due to its photocatalytic properties, in the case of both powders and coatings. Nanostructured titania has been reported to be used in many applications in different fields ranging from optics to gas sensor via solar energy. Recent researches point out the existence of new procedures used in order to enhance the efficiency of the photocatalytic process. The metal ion doping is such an example. Two types of 2 wt.% Au containing TiO2 powders have been embedded in sol-gel vitreous TiO2 matrices. Au-doped TiO2 films have been prepared from these sols, by dipping procedure using quartz microscopic slides, as substrates. The relationship between the synthesis conditions and the properties of titania nanosized materials, such as thermal stability, phase composition, crystallinity, and the influence of dopant was investigated. The hydrophilic properties of the films were correlated with their structure, composition and surface morphology. 相似文献
10.
In the present work the influence of the OH groups on the photocatalytic activity and the photoinduced hydrophilicity of microwave assisted sol-gel TiO2 films was investigated. The prepared TiO2 films were characterized using XRD and AFM. Furthermore, the surface of the TiO2 films was examined by help of XPS in order to determine the amount of OH groups before and after UV irradiation at different humidities. The activity of the TiO2 films was determined using stearic acid as a model compound and the photoinduced superhydrophilicity was investigated through contact angle measurements.The results of this investigation showed that the microwave assisted sol-gel technique produces highly homogeneous and efficient TiO2 films without the need for heat treatment for crystallization. Based on the conducted experiments it is suggested that the amount of OH groups on the TiO2 surface highly influence the photocatalytic activity and the photoinduced superhydrophilicity and that the two mechanisms may be closely related. It is suggested that the superhydrophilicity is obtained through a combination of photocatalytic degradation of organic contaminants and surface structural changes in form of an increased amount of OH-groups. 相似文献
11.
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO2), TA (bottom layer was pure TiO2, surface layer was Ag modified), TT (pure TiO2 thin film) and AA (TiO2 thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (Iph). LSV confirmed the existence of Ag0 state in the TiO2 thin film. SEM and XRD experiments indicated that the sizes of the TiO2 nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film. 相似文献
12.
Polyaniline (PANI)/TiO2 composite is prepared by in situ polymerization of polyaniline on the surface of TiO2 template obtained by the sol-gel process via cotton template. The TiO2 microbelts are prepared by sol-gel method using the absorbent cotton as template for the first time. Then the TiO2 microtubules are used as template for the preparation of polyaniline/TiO2 composites. The structure, morphology and properties of the composites are characterized with scanning electron microscope (SEM), IR, Net-wok Analyzer. A possible formation mechanism of TiO2 microtubules and polyaniline/TiO2 composites has been proposed. The effect of the mol ratio of polyaniline/TiO2 on the microwave loss properties and photocatalysis properties of the composites is investigated. 相似文献
13.
The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1. 相似文献
14.
采用改进的溶胶-凝胶方法在LaNiO3/Si(100)衬底上制备了MgO/(Ba0.8Sr0.2)TiO3多层薄膜.实验结果表明,MgO层的引入改变了(Ba0.8Sr0.2)TiO3的介电特性和漏电流行为,使薄膜的漏电 流降低了3个数量级,但介电常数也有相应降低.漏电流的显著降低是由MgO子层的高阻特性 以及微量Mg向(Ba0.8关键词:
0.8Sr0.2)TiO3多层薄膜')" href="#">MgO/(Ba0.8Sr0.2)TiO3多层薄膜
漏电流
介电常 数 相似文献
15.
Optical, structural and photocatalytic properties of TiO2 thin films obliquely deposited on quartz glass substrate using an electron-beam evaporation method were investigated. The photocatalytic activity of the films was evaluated by photodecomposition of methylene blue. An increase in incident deposition angle increased the porosity and surface roughness of the TiO2 films. As a result, the photocatalytic activity was enhanced with incident deposition angle up to 60°. However, a further increase in incident deposition angle to 75° reduced the photocatalytic activity due to a lack of the crystalline phase. 相似文献
16.
Cr doped TiO2-SiO2 nanostructure thin film on glass substrates was prepared by a sol-gel dip coating process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the structural and chemical properties of the films. A UV-vis spectrophotometer was used to measure the transmittance spectra of the thin film. The hydrophilicity of the thin film during irradiation and storage in a dark place was measured by a contact angle analyzer. The results indicated that Cr doping has a significant effect on the transmittance and super-hydrophilicity of TiO2-SiO2 thin film. 相似文献
17.
Visible-light photocatalytic activity of nitrogen-doped TiO2 thin film prepared by pulsed laser deposition 总被引:1,自引:0,他引:1
Lei Zhao 《Applied Surface Science》2008,254(15):4620-4625
Nitrogen-doped titanium dioxide (TiO2−xNx) thin films have been prepared by pulse laser deposition on quartz glass substrates by ablated titanium dioxide (rutile) target in nitrogen atmosphere. The x value (nitrogen concentration) is 0.567 as determined by X-ray photoelectron spectroscopy measurements. UV-vis spectroscopy measurements revealed two characteristic deep levels located at 1.0 and 2.5 eV below the conduction band. The 1.0 eV level is attributable to the O vacancy state and the 2.5 eV level is introduced by N doping, which contributes to narrowing the band-gap by mixing with the O2p valence band. The enhanced degradation efficiency in a broad visible-light range was observed from the degradation of methylene blue and methylene orange by the TiO2−xNx film. 相似文献
18.
TiO2 nanoparticles capped with sodium dodecylbenzenesulfonate (DBS) are synthesized by a sol-hydrothermal process using tetrabutyl titanate and DBS as raw materials. The effects of surface-capping DBS on the surface photovoltage spectroscopy (SPS), photoluminescence (PL) and photocatalytic performance of TiO2 nanoparticles are principally investigated together with their relationships. The results show that the surface of TiO2 nanoparticles can be well capped by DBS groups while the pH value and added DBS amount are controlled at 5.0 and 2% of TiO2 mass weight, respectively, and the linkage between DBS groups and TiO2 surfaces is mainly by means of quasi-sulphonate bond. The intensities of SPS and PL spectra of TiO2 obviously decrease after DBS-capping, while the activity can greatly increase during the photocatalytic degradation of Rhodamine B (RhB) solution, which are mainly attributed to the electron-withdrawing character of the DBS groups. Moreover, the enhancement of photocatalytic activity of DBS-capped TiO2 is also related to the increase in the capability for adsorbing RhB. 相似文献
19.
CdS doped TiO2 thin films (with CdS content=0, 3, 6, 9 and 12 at%) were grown on glass substrates. The X-ray diffraction analysis revealed that the films are polycrystalline of monoclinic TiO2 structure. The microstructure parameters of the films such as crystallite size (Dν) and microstrain (e) are calculated. Both the crystallites size and the microstrain are decreased with increasing CdS content. The optical constants have been determined in terms of Murmann's exact equations. The refractive index and extinction coefficient are increased with increasing CdS content. The optical band gap is calculated in the strong absorption region. The possible optical transition in these films is found to be an allowed direct transition. The values of Egopt are found to decrease as the CdS content increased. The films with 3 at% CdS content have better decomposition efficiency than undoped TiO2. The films with 6 at% and 9 at% CdS content have decomposition efficiency comparable to that of undoped TiO2, although they have lower band gap. The CdS doped TiO2 could have a better impact on the decomposing of organic wastes. 相似文献
20.
CoPt-TiO2 nanocomposite films were synthesized by rapid thermal annealing of CoPt/TiO2 multilayers. The effects of annealing temperature, annealing time, Ag addition and TiO2 volume fraction on the microstructures and magnetic properties of the CoPt-TiO2 nanocomposite films were studied. Results showed that the ordering degree of CoPt and coercivity of CoPt-TiO2 nanocomposites increased with annealing temperature. Increasing annealing time and Ag addition were able to increase the ordering degree and coercivity of CoPt. However, complete L10-ordering of CoPt at 550 °C annealing was not realized by increasing annealing time up to 30 min and Ag addition up to 30 vol.%. Increasing TiO2 volume fraction at 700 °C annealing did not lead to the change of ordering of CoPt. However, the grain structure of the films changed slightly when TiO2 volume fraction was larger than 56%. The coercivity of the film decreased slightly with the addition of TiO2. 相似文献