首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effective biaxial modulus (Meff) and strain energy density (W) of cubic polycrystalline films with ideally (h k l) fiber textures are estimated using Vook-Witt (VW) grain interaction model and the data are compared with those derived from Voigt, Reuss and Voigt-Reuss-Hill (VRH) models. Numerical results show that the VW average of Meff for ideally (1 0 0)- or (1 1 1)-fiber-textured films is identical to the VRH average of Meff. For (1 1 0) and (1 1 2) planes, however, the VW average of Meff for (1 1 0)-fiber-textured film is larger than that of (1 1 2)-fiber-textured film when the Zener anisotropic factor (AR) is not equal to 1. Furthermore, Meff and W exhibit incremental tendencies with the increase of the orientation factor (Γh k l) for the [h k l] axis when AR > 1, implying that Meff and W have the minimums on the (1 0 0) plane. Reversely, Meff and W decrease with the increasing Γh k l when AR < 1. This means that Meff and W on (1 1 1) plane have the minimums.  相似文献   

2.
For the periodicity-modulation of the Si(h h k) template between (0 0 1) and (1 1 1), it is necessary to prepare the surface with any orientation within this range, most especially for fabricating useful one-dimensional nanostructures. Especially, when there are no strong X-ray signals using the standard Cu K-α source in the vicinity of any arbitrarily chosen (H H K), it turns out that the line-profile analysis on the topographic image of scanning tunneling microscopy can be a unique way for confirming the orientation of the prepared surface. Though there are a number of small-width facets on the reconstructed surface, if any of well-defined facets, such as (1 1 1), (3 3 7), (1 1 2), and (3 3 5), are included in these facets it is possible to determine the orientation using the weighted-average method.  相似文献   

3.
The carbon 1s near-edge X-ray absorption fine structure (NEXAFS) spectra of the acetylene (C2H2) at 1 ML coverage adsorbed on the Si(0 0 1)-(2 × 1) surface at room temperature have been investigated by multiple-scattering cluster (MSC). The MSC result shows that the correct adsorption model of C2H2/Si(0 0 1)-(2 × 1) is unique, i.e. the dimerized structure with two domains, (2 × 1) and (1 × 2).  相似文献   

4.
Dou-Dou Wang  Ke-Wei Xu 《Surface science》2006,600(15):2990-2996
In this paper, anisotropy of the surface energy of 5 hcp metals Be, Hf, Ru, Ti and Y have been analyzed. The surface energies of three kinds of representative surfaces, (h 0 l), (h h l) and (h k 0) belong to [0 1 0], [] and [0 0 1] crystal band, respectively, have been calculated using the modified embedded atom method. For all 5 hcp metals, the (1 1 0) plane has the minimum surface energy in all 35 surfaces studied. Considering surface energy minimization solely, the (1 1 0) texture should be favorable in the hcp films. The fact that the short termination corresponds to much lower surface energy than long one implies the former is more stable for those surfaces having two possible terminations. Such as the prism plane (1 0 0), only the short termination was observed in experiment.  相似文献   

5.
Haibo Zhao 《Surface science》2009,603(23):3355-12149
The influence of hydrogen coadsorption on hydrocarbon chemistry on transition metal surfaces is a key aspect to an improved understanding of catalytic selective hydrogenation. We have investigated the effects of H preadsorption on adsorption and reaction of 1,3-butadiene (H2CCHCHCH2, C4H6) on Pt(1 1 1) surfaces by using temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). Preadsorbed hydrogen adatoms decrease the amount of 1,3-butadiene chemisorbed on the surface and chemisorption is completely blocked by the hydrogen monolayer (saturation) coverage (θH = 0.92 ML). No hydrogenation products of reactions between coadsorbed H adatoms and 1,3-butadiene were observed to desorb in TPD experiments over the range of θH investigated (θH = 0.6-0.9 ML). This is in strong contrast to the copious evolution of ethane (CH3CH3, C2H6) from coadsorbed hydrogen and ethylene (CH2CH2, C2H4) on Pt(1 1 1). Hydrogen adatoms effectively (in a 1:1 stoichiometry) remove sites from interaction with chemisorbed 1,3-butadiene, but do not affect adjacent sites. The adsorption energy of coadsorbed 1,3-butadiene is not affected by the presence of hydrogen on Pt(1 1 1). The chemisorbed 1,3-butadiene on hydrogen preadsorbed Pt(1 1 1) completely dehydrogenates to H2 and surface carbon upon heating without any molecular desorption detected, which is identical to that observed on clean Pt(1 1 1). In addition to revealing aspects of site blocking that should have broad implications for hydrogen coadsorption with hydrocarbon molecules on transition metal surfaces in general, these results also provide additional basic information on the surface science of selective catalytic hydrogenation of butadiene in butadiene-butene mixtures.  相似文献   

6.
We investigated the growth of Fe nanostructured films on c(2 × 2)-N/Cu(1 0 0) surface with Fe K-edge X-ray absorption fine structure (XAFS) in the near edge and in the extended energy region. The high photon flux of the incident X-rays allowed us to perform multishell analysis of the XAFS oscillations for Fe coverage ΘFe < 1 ML. This data analysis yields a detailed investigation of the atom geometry and some insights in the film morphology. At ΘN < 0.5 ML (N saturation coverage) there is absence of contribution to XAFS from N atoms. First shell analysis of linearly polarized XAFS gives Fe-Fe (or Fe-Cu) bond length values varying between R1 = 2.526 ± 0.006 Å at the highest Fe coverage (3 ML ) and R1 = 2.58 ± 0.01 Å at ΘFe = 0.5 ML, ΘN = 0.3 ML, with incidence angle Θ = 35°. These values are different from the case of bcc Fe (R = 2.48 Å), and compatible with fcc Fe (R1 = 2.52 Å) and fcc Cu (R1 = 2.55 Å). At the Fe lowest coverage (ΘFe = 0.5 ML) the dependence of R1 on the incidence angle indicates expansion of the outmost layer. Near edge spectra and multishell analysis can be well reproduced by fcc geometry with high degree of static disorder. At N saturation pre-coverage (ΘN = 0.5 ML) the XAFS analysis has to keep into account the Fe-N bonding. The results suggest two different adsorption sites: one with Fe in a fcc hollow site, surrounded by other metal atoms as nearest neighbours, and one resulting from an exchange with a Cu atom underneath the N layer.  相似文献   

7.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

8.
The orientation of hexafluorobenzene (C6F6) on the Cu(1 1 1) surface has been determined for different coverages with the help of near edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). The adsorption geometry and the bonding mode of C6F6 differ significantly in comparison to its hydrocarbon analog C6H6. C6F6 is found to adsorb on Cu(1 1 1) with the ring plane parallel to the surface for coverages below 10 ML. Next to the distinct multilayer, bilayer and monolayer phases we also present evidence of sub-monolayer (i.e., 1/2 ML) coverage with different electronic structure. These findings are explained in a phenomenological model based on fluorine’s property as a σ-acceptor and a π-donor and the resulting bond polarization within the molecule, which is stabilized by image-potential screening within the substrate.  相似文献   

9.
The interactions of H and H2 with W(1 0 0)-c(2 × 2)Cu and W(1 0 0) have been investigated through density functional theory (DFT) calculations to elucidate the effect of Cu atoms on the reactivity of the alloy. Cu atoms do not alter the attraction towards top-W sites felt by H2 molecules approaching the W(1 0 0) surface but make dissociation more difficult due to the rise of late activation barriers. This is mainly due to the strong decrease in the stability of the atomic adsorbed state on bridge sites, the most favourable ones for H adsorption on W(1 0 0). Still, our results show unambiguously that H2 dissociative adsorption on perfect terraces of the W(1 0 0)-c(2 × 2)Cu surface is a non-activated process which is consistent with the high sticking probability found in molecular beam experiments at low energies.  相似文献   

10.
The structures and energetics of the chemisorbed CO2, CHx species and H as well as C2H4 on the α-Mo2C(0 0 0 1) surface have been computed at the GGA-RPBE level of density functional theory. It is found that CO2 adsorbs dissociately into CO and O, in agreement with the experimental finding. The adsorbed O, CHx and H species prefer the site of three surface molybdenum atoms over a second layer carbon atom (VC site). On the basis of the calculated adsorption energies of CHx and H, the sequential dehydrogenation of CH4 and the C/C coupling reaction of CHx have been discussed.  相似文献   

11.
Jooho Kim  Bruce E. Koel 《Surface science》2006,600(19):4622-4632
Nanosized gold particles supported on reducible metal oxides have been reported to show high catalytic activity toward CO oxidation at low temperature. This has generated great scientific and technological interest, and there have been many proposals to explain this unusual activity. One intriguing explanation that can be tested is that of Nørskov and coworkers [Catal. Lett. 64 (2000) 101] who suggested that the “unusually large catalytic activity of highly-dispersed Au particles may in part be due to high step densities on the small particles and/or strain effects due to the mismatch at the Au-support interface”. In particular, their calculations indicated that the Au(2 1 1) stepped surface would be much more reactive towards O2 dissociative adsorption and CO adsorption than the Au(1 1 1) surface. We have now studied the adsorption of O2 and O3 (ozone) on an Au(2 1 1) stepped surface. We find that molecular oxygen (O2) was not activated to dissociate and produce oxygen adatoms on the stepped Au(2 1 1) surface even under high-pressure (700 Torr) conditions with the sample at 300-450 K. Step sites do bind oxygen adatoms more tightly than do terrace sites, and this was probed by using temperature programmed desorption (TPD) of O2 following ozone (O3) exposures to produce oxygen adatoms up to a saturation coverage of θO = 0.90 ML. In the low-coverage regime (θO ? 0.15 ML), the O2 TPD peak at 540 K, which does not shift with coverage, is attributed to oxygen adatoms that are bound at the steps on the Au(2 1 1) surface. At higher coverages, an additional lower temperature desorption peak that shifts from 515 to 530 K at saturation coverage is attributed to oxygen adsorbed on the (1 1 1) terrace sites of the Au(2 1 1) surface. Although the desorption kinetics are likely to be quite complex, a simple Redhead analysis gives an estimate of the desorption activation energy, Ed, for the step-adsorbed oxygen of 34 kcal/mol and that for oxygen at the terraces near saturation coverage of 33 kcal/mol, values that are similar to others reported on Au surfaces. Low Energy Electron Diffraction (LEED) indicates an oxygen-induced step doubling on the Au(2 1 1) surface at low-coverages (θO = 0.08-0.17 ML) and extensive disruption of the 2D ordering at the surface for saturation coverages of oxygen (θO ? 0.9 ML). Overall, our results indicate that unstrained step sites on Au(2 1 1) surfaces of dispersed Au nanoparticles do not account for the novel reactivity of supported Au catalysts for CO oxidation.  相似文献   

12.
Low temperature scanning tunneling microscopy (LT-STM) and scanning tunneling spectroscopy (STS) have been used to investigate adsorbed copper phthalocyanine (C32H16N8Cu) molecules on an ordered ultrathin Al2O3 film on the Ni3Al(1 1 1) surface as a function of coverage and annealing temperature. For sub-monolayer coverage and a deposition temperature of 140 K two different planar molecular adsorption configurations rotated by 30° with respect to each other were observed with submolecular resolution in the STM images. The template effect of the underlying oxide film on the CuPc orientation, however, is only weak and negligible at higher coverages. For θCuPc ≈ 1 ML, before completion of the first layer, the growth of a second layer was already observed. The measured spacing of 3.5 Å between first and second layer corresponds to the distance between the layers in the α-modification of crystalline CuPc. The molecules deposited at 140 K are thermally stable upon prolonged annealing to temperatures up to 250 K. By the use of STS the lowest unoccupied molecular orbital (LUMO) of the adsorbed copper phthalocyanine molecules has been identified at an energy of 1.2 eV above EF. The lateral distribution of the electronic states of the CuPc has been analyzed and mapped by STS.  相似文献   

13.
P. Mutombo  V. Cháb 《Surface science》2009,603(4):590-596
Density functional theory calculations have been performed to determine the adsorption site of carbon at the Si(1 1 1):As and Si(1 1 1):H surfaces at different coverages. The As- and H-passivated surfaces were simulated by replacing the topmost Si layer by As or by saturating the Si dangling bonds with hydrogen atoms, respectively. Different high symmetry sites were considered. Carbon was placed successively in the fourfold (T4) or threefold coordinated (H3), the ontop (T1) sites or substituted for a Si atom in the S5 position located underneath the Si adatom in the T4 site. We found that the preferred carbon adsorption site depends on the coverage of the passivated surfaces. At low coverages i.e. at 1/16 ML and 1/3 ML, it prefers a distorted T4 position whereas at 1 ML, it occupies an H3 site. This contrasts with the clean surface where the most energetically favored site is the S5 at all coverages. Carbon adsorption induces a significant change in the structural geometry of the surface atoms, leading to a charge re-arrangement in the surface layers.  相似文献   

14.
Interactions of atomic and molecular hydrogen with perfect and deficient Cu2O(1 1 1) surfaces have been investigated by density functional theory. Different kinds of possible modes of H and H2 adsorbed on the Cu2O(1 1 1) surface and possible dissociation pathways were examined. The calculated results indicate that OSUF, CuCUS and Ovacancy sites are the adsorption active centers for H adsorbed on the Cu2O(1 1 1) surface, and for H2 adsorption over perfect surface, CuCUS site is the most advantageous position with the side-on type of H2. For H2 adsorption over deficient surface, two adsorption models of H2, H2 adsorbing perpendicularly over Ovacancy site and H2 lying flatly over singly-coordinate Cu-Cu short bridge, are typical of non-energy-barrier dissociative adsorption leading to one atomic H completely inserted into the crystal lattice and the other bounded to CuCUS atom, suggesting that the dissociative adsorption of H2 is the main dissociation pathway of H2 on the Cu2O(1 1 1) surface. Our calculation result is consistent with that of the experimental observation. Therefore, Cu2O(1 1 1) surface with oxygen vacancy exhibits a strong chemical reactivity towards the dissociation of H2.  相似文献   

15.
To investigate solvent effects, CO and H2 adsorption on Cu2O (1 1 1) surface in vacuum, liquid paraffin, methanol and water are studied by using density functional theory (DFT) combined with the conductor-like solvent model (COSMO). When H2 and CO adsorb on Cucus of Cu2O (1 1 1) surface, solvent effects can improve CO and H2 activation. The H-H bond increases with dielectric constant increasing as H2 adsorption on Osuf of Cu2O (1 1 1) surface, and the H-H bond breaks in methanol and water. It is also found that both the structural parameters and Mulliken charges are very sensitive to the COSMO solvent model. In summary, the solvent effects have obvious influence on the clean surface of Cu2O (1 1 1) and the adsorptive behavior.  相似文献   

16.
The chemical behaviour of 3-hexyne on oxygen modified Ru(0 0 1) surfaces has been analysed under ultrahigh-vacuum, using reflection-absorption infrared spectroscopy (RAIRS). The effects of oxygen coverage, 3-hexyne exposure and adsorption temperature were studied. Two modified Ru(0 0 1) surfaces were prepared: Ru(0 0 1)-(2 × 2)-O and Ru(0 0 1)-(2 × 1)-O that correspond to oxygen coverages (θO) of 0.25 and 0.5 ML, respectively. The striking result is the direct bonding to an O atom when the modified surfaces are exposed to a very low dose (0.2 L) of 3-hexyne at low temperature (100 K). For θO = 0.25 ML, an unsaturated oxametallacycle [Ru-O-C(C2H5)C(C2H5)-Ru] is proposed, identified by RAIRS for the first time, through the νCC and νCO modes. Further decomposition at 110 K yields smaller oxygenated intermediates, such as acetyl [μ32(C,O)-CH3CO], co-adsorbed with a small amount of carbon monoxide and non-dissociated species. The temperature at which a fraction of molecules undergoes complete C-C and C-H bond breaking is thus much lower than on clean Ru(0 0 1). The ultimate decomposition product observed by RAIRS at 220 K is methylidyne [CH]. Another key observation was that the adsorption temperature is not determinant of the reaction route, contrarily to what occurs on clean Ru(0 0 1): even when 3- hexyne strikes the surface at a rather high temperature (220 K), the multiple bond does not break completely. For θO = 0.5 ML, a saturated oxametallacycle [Ru-O-CH(C2H5)-CH(C2H5)-Ru] is also proposed at 100 K, identified by the νasO-C-C (at 1043 cm−1) and νsO-C-C (at 897 cm−1) modes, showing that some decomposition with C-H bond breaking occurs. For this oxygen coverage, the reaction temperatures are lower, and the intermediate surface species are less stable.  相似文献   

17.
Adsorption probability measurements (molecular beam scattering) have been conducted to examine the adsorption dynamics (i.e. the gas-surface energy transfer processes) of CO2 adsorption on the Zn-on-Cu(1 1 0) bimetallic system. The results indicate surface alloy formation, which is in agreement with prior studies. Depositing Zn at 300 K on Cu(1 1 0), above the condensation temperature of CO2, leads to a “blocking” of CO2 adsorption sites by Zn which is incorporated in the Cu(1 1 0) surface. This apparent site blocking effect indicates a lowering of the CO2 binding energy on the alloyed surface as compared with the clean Cu(1 1 0) support. The Zn coverage has been calibrated by Auger electron spectroscopy and thermal desorption spectroscopy.  相似文献   

18.
Au/TiO2/Ru(0 0 0 1) model catalysts and their interaction with CO were investigated by scanning tunneling microscopy and different surface spectroscopies. Thin titanium oxide films were prepared by Ti deposition on Ru(0 0 0 1) in an O2 atmosphere and subsequent annealing in O2. By optimizing the conditions for deposition and post-treatment, smooth films were obtained either as fully oxidized TiO2 or as partly reduced TiOx, depending on the preparation conditions. CO adsorbed molecularly on both oxidized and reduced TiO2, with slightly stronger bonding on the reduced films. Model catalyst surfaces were prepared by depositing submonolayer quantities of Au on the films and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. From X-ray photoelectron spectroscopy, a weak interaction between the Au and the TiO2 substrate was found. At 100 K CO adsorption occurred on both the TiO2 film and on the Au nanoparticles. CO desorbed from the Au particles with activation energies between 53 and 65 kJ/mol, depending on the Au coverage. If the Au deposit was annealed to 770 K prior to CO exposure, the CO adsorption energy decreased significantly. STM measurements revealed that the Au particles grow upon annealing, but are not encapsulated by TiOx suboxides. The higher CO adsorption energy observed for smaller Au coverages and before annealing is attributed to a significantly stronger interaction of CO with mono- and bilayer Au islands, while for higher particles, the adsorption energy becomes more bulk-like. The implications of these effects on the known particle size effects in CO oxidation over supported Au/TiO2 catalysts are discussed.  相似文献   

19.
Xueying Zhao 《Surface science》2006,600(10):2113-2121
The adsorption of glycine on Au(1 1 1) pre-deposited with different amounts of Cu was investigated with both conventional X-ray photoelectron spectroscopy (XPS) and synchrotron-based photoemission. In the Cu submonolayer range, glycine physically adsorbs on the Cu/Au(1 1 1) surfaces in its zwitterionic form and completely desorbs at 350 K. The C 1s, O 1s and N 1s core level binding energies monotonically increase with Cu coverage. This indicates that, in the Cu submonolayer range, the admetal is alloyed with Au rather than forming overlayers on the Au(1 1 1) substrate, consistent with our recent experimental and theoretical results [X. Zhao, P. Liu, J. Hrbek, J.A. Rodriguez, M. Pérez, Surf. Sci. 592 (2005) 25]. Upon increasing the amount of deposited Cu over 1 ML, part of the glycine overlayer transforms from the zwitterionic form to the anionic form (NH2CH2COO) and adsorbs chemically on the Cu/Au(1 1 1) surface with the N 1s binding energy shifted by −2.3 eV. When the amount of deposited Cu is at 3.0 or 6.0 ML, the intensity of the N 1s chemisorption peak increases with aging time at 300 K. It indicates that glycine adsorption induces Cu segregation from the subsurface region onto the top layer of the substrate. Judging from the initial N 1s peak intensities, it is concluded that 64% and 36% of the top layer are still occupied by Au atoms before glycine adsorption even when the amounts of deposited Cu are 3.0 and 6.0 ML, respectively. On the Au(1 1 1) surface pre-dosed with 6.0 ML of Cu, part of the chemisorbed glycine will desorb and part will decompose upon heating to 450-500 K. In addition, about 20% of the glycine exists in the neutral form when the glycine overlayer was dosed on Cu/Au(1 1 1) held at 100 K.  相似文献   

20.
Ab initio density functional theory, using the B3LYP hybrid functional with all-electron basis sets, has been applied to the adsorption of H on the (0 0 0 1) surface of wurtzite GaN. For bulk GaN, good agreement is obtained with photoemission and X-ray emission data for the valence band and for the Ga 3d and N 2s shallow core levels. A band gap of Eg = 4.14 eV is computed vs the experimental value (at 0 K) of 3.50 eV. A simple model, consisting of a (2 × 2) structure with 3/4-monolayer (ML) of adsorbed H, is found to yield a density of states in poor agreement with photoemission data for H adsorbed on surfaces prepared by ion bombardment and annealing. A new model, consisting of co-adsorbed Ga (1/4 ML) and H (1/2 ML), is proposed to account for these data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号