首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of nanoparticles in sequentially ion-implanted Ag and Ag/Cu into silica glasses has been studied. The doses for implantation (×1016 ions/cm2) were 5Ag, 5Ag/5Cu and 5Ag/15Cu. Ag nanoclusters have been formed in the implanted 5Ag specimen. In the implanted 5Ag/5Cu specimen, some formed nanoclusters have brighter center features. With an increase of Cu ions dose, the nanoclusters with brighter center features become prevalent. The microstructural properties of the nanoparticles are characterized by transmission electron microscopy. Scanning transmission electron microscope high-angle annular dark field and high-resolution transmission electron microscopy are also utilized to study the formed nanoparticles. The results show that nanovoids have been induced into metal nanoparticles during the ion implanting process, not the core-shell nanoparticles as other workers believed. The nanovoids can be the aggregation of vacancies induced by irradiation.  相似文献   

2.
The review of results on nanoparticles formation is presented under laser ablation of Ag, Au, and Cu-containing solid targets in liquid environments (H2O, C2H5OH, C2H4Cl2, etc.). X-ray diffractometry (XRD), UV-vis optical transmission spectrometry, and high resolution transmission electron microscopy (HRTEM) characterize the nanoparticles. The morphology of nanoparticles is studied as the function of both laser fluence and nature of the liquid. The possibility to control the shape of nanoparticles by ablation of an Au target by an interference pattern of two laser beams is demonstrated. Formation of alloyed Au-Ag and Ag-Cu nanoparticles is reported under laser exposure of a mixture of individual nanoparticles. The effect of internal segregation of brass nanoparticles is discussed due to their small lateral dimensions. The factors are discussed that determine the distribution function of particles size under laser ablation. The influence of laser parameters as well as the nature on the liquid on the properties of nanoparticles is elucidated.  相似文献   

3.
The cobalt ferrite nanoparticles of 20 nm size were synthesized by sol-gel auto-combustion technique. The samples were irradiated with Nd:YAG laser to understand the effects of irradiation on structural, cation distribution and magnetic properties. The virgin and irradiated samples were characterized by X-ray diffraction technique. The X-ray diffraction studies at room temperature shows that defects were created in the lattice after irradiation which causes effects on structural, cation distribution and magnetic properties. The energy dispersive analysis of X-rays (EDAX) showed the chemical composition is as per the expected stichiometry. The lattice constant observed from XRD data for virgin and irradiated samples shows increasing trend after irradiation. Cation distribution was investigated by using X-ray diffraction method. We observe decrease in magnetization of the samples after irradiation. The observed reduction in the saturation magnetization after irradiation can be understood on the basis of the partial formation of paramagnetic centers and rearrangement of cations in the lattice.  相似文献   

4.
Nano-sized YAG:Tb powder phosphors were prepared by a solution-combustion method, using the general inorganic salts as starting materials. The X-ray diffraction (XRD) measurements showed that the precursor can be well-crystallized at 900 °C. As-prepared particles have sizes mostly in the range between 30 and 100 nm as obtained by scanning electron microscope (SEM) and transition electron microscope (TEM). Selected area electron diffraction (SAED) patterns proved that the larger particles are monocrystalline. The effects of annealing temperature and Tb-doping concentration on the luminescence intensity were studied.  相似文献   

5.
6.
The effect of thermal annealing on the magnetic, transport and electronic properties of electron beam evaporated Fe/Al multilayer samples (MLS), with an overall atomic concentration ratio of Fe/Al 1:1, have been investigated. The grazing incidence X-ray diffraction, resistivity and valance band photoemission measurements indicates the formation of sub-stoichiometric B2 FeAl intermetallic phase at the interface for the MLS annealed at higher temperatures. The corresponding magnetization measurements show large increase in coercivity and drastic reduction in magnetization values. The observed magnetization behaviour in each case is interpreted in terms of their structural and electronic properties changes induced due to the annealing treatment.  相似文献   

7.
The thermal annealing behavior of the Y3Al5O12, CaF2 and LiF single crystals bombarded at Algiers with reactor neutrons has been monitored by optical absorption spectroscopy. The irradiation was performed at about 315 K. On heating samples after irradiation, the optical absorption bands decrease and disappear completely at 873 and 523 K in the case of Y3Al5O12 and CaF2, respectively. Activation energies of 1.2±0.02 and 0.9±0.2 eV are estimated for Y3Al5O12 and CaF2, respectively. On the other hand, the LiF crystal shows a complex annealing behavior. Here, the optical absorption spectrum presents different shapes after each annealing temperature. Four steps are distinguished and discussed on heating samples from 300 to 673 K. Above 673 K, the absorption drops by about 50%; it completely disappears at 773 K.  相似文献   

8.
Most studies on Co-doped TiO2 system were focused on thin films grown by MBE-based methods. In this work we report the ferromagnetism of nanometer-thick-layered TiO2/Co/TiO2/TiN film grown on Si substrate by conventional magnetron sputtering. For the growth of TiO2 on silicon, a non-oxide thermally stable material, TiN, was introduced to prevent Ti penetration into the Si substrate. Structural, magnetic, and transport measurements respectively by Raman, SQUID and Hall effect show that our samples are n-type semiconductors and exchange bias effect due to exchange coupling between Co and interfacial CoO. For the rapid vacuum annealed specimen, we found an enhanced loss and a Perminvar-type constricted hysteresis loop, which attributed to pinning of domain walls due to an induced anisotropy by the pair ordering in the metallic alloy of Co-Ti-Si.  相似文献   

9.
Samples of synthetic NaCl crystals have been exposed to different doses of electron irradiation up to 1500 MGy (150 Grad) at elevated temperatures, and studied subsequently by X-ray diffraction. Our experimental results clearly show that there is a close correspondence between the geometrical properties (such as lattice distances and the crystal orientation) of the host crystal and the radiation-induced Na precipitates, which is referred to as the Kurdjumov-Sachs orientation relationship (K-S OR). The size of the precipitates has been estimated.  相似文献   

10.
Three methods based on ion-beam irradiation were used to fabricate Ag and Au colloids in silica and alumina. Their surface-plasmon resonance in the visible was characterised by transmittance measurements and interpreted on the basis of transmission electron microscope observations. Despite their bimodal size distribution, particles formed by ion-beam mixing of sandwich layers exhibit much narrower resonances than those obtained by ion implantation. This unusual effect of an inhomogeneity in cluster size is ascribed to the spatial organisation of these clusters. Irradiation of supersaturated solid solutions at much lower ion fluences produces colloids with more uniform size and spatial distributions, and equally strong resonances. Received: 17 March 2001 / Accepted: 31 July 2001 / Published online: 11 February 2002  相似文献   

11.
We report theoretical results on the magnetic behavior of free standing nanowires of Ti. Four different structures of Ti nanowires-linear, ladder, dimerized, and zigzag-with nonmagnetic, ferromagnetic, and anti-ferromagnetic configurations were considered. Exploration of magnetism in these atomic chains leads to ferromagnetic behavior for all the structures: zigzag structure shows almost degenerate ferromagnetic and anti-ferromagnetic states though. The zigzag structure of Ti nanowires is favored of all for low values of nearest neighbor distances, whereas the dimerized structure is favored at larger atomic separations. Our work helps to resolve the controversy in the predicted ground state magnetic nature of zigzag chains of Ti as reported in recent previous works. The maximum value of magnetic moment (0.93 μB/atom) occurs in the ladder chains while the zigzag chains show the minimum value (0.17 μB/atom). Interestingly, all the structures in the magnetic configuration show metastable state except the dimerized structure. Ferromagnetic dimerized nanowires seem to be a potential candidate for use in spintronics. The projected density of states shows that dx2y2 and dxy bands play a leading role in magnetism of linear and ladder structures, whereas there is no outstanding contribution from a particular d-orbital for zigzag and dimerized nanowires. The charge density plots suggest that linear and zigzag structures have metallic bonding whereas covalent bonding is predominant in the dimerized and ladder structures. The estimated diameters for the favored ferromagnetic configuration of these ultrathin nanowires lie in the range 1.9-3.4 Å and indicate the instability of the ladder structure, as also projected by the relative cohesive energy and relative break force values.  相似文献   

12.
In spite of previous extensive studies, the helium behavior in metals still remains an issue in microelectronics as well as in nuclear technology. A gold-silver solid solution (Au60Ag40: synthetic gold-rich electrum) was chosen as a relevant model to study helium irradiation of heavy metals. After helium-3 ion implantation at an energy ranging from 4.2 to 5.6 MeV, nuclear reaction analysis (NRA) based on the 3He(d,p)4He reaction, was performed in order to study the thermal diffusion of helium atoms. At room temperature, NRA data reveal that a single Gaussian can fit the He-distribution, which remains unchanged after annealing at temperatures below 0.45 of the melting point. Slow positron implantation spectroscopy, used to monitor the fluence dependence of induced defects unveils a positron saturation trapping, which occurs for He contents of the order of 50-100 appm, whereas concentrations larger than 500 appm seem to favor an increase in the S-parameter of Doppler broadening. Moreover, at high temperature, NRA results clearly show that helium long range diffusion occurs, though, without following a simple Fick law.  相似文献   

13.
In this paper, the determination of the defects induced by 20 MeV Au irradiations in hexagonal silicon carbide single crystals is discussed. The evolution of the irradiation-induced defects as a function of the ion fluence has been studied as a function of depth below the surface using 0.5-25 keV positron beam based Doppler annihilation-ray broadening spectrometry. Results show the detection of two different kinds of defects, depending on the ion fluence.  相似文献   

14.
Using full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method, we have investigated the dependence of GaAs clusters with eight atoms on composition. It is found that the ground state structures for Ga-rich and As-rich clusters are cube structures. As the ratio between gallium atoms and arsenic atoms is close to one, structural distortion become increasingly severe, or even the clusters adopt other geometrical configurations as their ground state structures. The energy gap Eg between the highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO), and the vertical electron affinity show a certain degree of even/odd alternation with cluster composition. Among nine Ga8−nAsn (n=0-8) clusters, only a few of clusters have different energy orders between the ionic and neutral isomers with large binding energy. Some ionic structures would change into other configurations due to severe structural distortion.  相似文献   

15.
The swift heavy ion (190 MeV Au14+) induced modifications in surface morphologies of the nanocrystals of ferrite thin films have been extensively studied through the images of atomic force microscopy (AFM). In most of the irradiated films significant features like, the ditch and dike structures, have been observed through out the surface. We try to explain the observed changes on the basis of thermal spike model followed by momentum transfer induced lateral mass transport. In addition to these changes some new and interesting features have been noticed after irradiation in 8F and 9F ferrite thin films. These new features are attributed to sputtering phenomenon due to the presence of defects like latent tracks.  相似文献   

16.
In this paper, we observed that in Er3+/Yb3+ codoped nanocrystals (NC), with the decreasing particle size and the increasing Yb3+ concentration, the upconversion luminescence (UCL) of the red emissions of gradually increased, while the green emissions of gradually diminished under 980 nm diode laser excitation. In NC with lower Yb3+ concentration, both the red and green emissions result from a two-photon excitation. In NC with higher Yb3+ concentration, the red emissions result from a two-photon excitation, while the green emissions dominantly result from a three-photon excitation. A model was provided for explaining the above UCL phenomena.  相似文献   

17.
Metal nanocluster composite glass prepared by 180 keV Cu ions into silica with dose of 1 × 1017 ions/cm2 has been studied. The microstructural properties of the nanoclusters were analysed by optical absorption spectra and transmission electron microscopy (TEM). Third-order nonlinear optical properties of the nanoclusters were measured at 1064 nm and 532 nm excitations using Z-scan technique. The nonlinear refraction index, nonlinear absorption coefficient, and the real and imaginary parts of the third-order nonlinear susceptibility were deduced. The mechanisms responsible for the nonlinear response were discussed. Absolute third-order nonlinear susceptibility χ(3) of this kind of sample was determined to be 2.1 × 10−7 esu at 532 nm and 1.2 × 10−7 esu at 1064 nm, respectively.  相似文献   

18.
Luminescent Ca1−xF2+x:Eux nanoparticles were synthesized by a chemical co-precipitation method in an ethanol solution. The Ca1−xF2+x:Eux nanoparticles exhibit a sphere-like morphology with particle diameter of about 15-20 nm. With increasing concentration of Eu3+ ion the intensity of XRD diffraction peaks decreased significantly and full width at half-maximum of the peaks increased gradually, which indicated that more Eu3+ ions resulted in the increase of structural defects. The emission spectrum of Ca1−xF2+x:Eux nanoparticles consisted of a few narrow, sharp lines corresponding to Eu3+ ions. The luminescence intensity of Ca1−xF2+x:Eux nanoparticles increased with increasing concentration of Eu3+ ion and reached a maximum at approximately 15 mol%.  相似文献   

19.
The effect of Tb on the coercivity and impact toughness of sintered Nd–Dy–Fe–B magnets has been investigated. The results showed that the addition of Tb enhanced the intrinsic coercivity, reduced the remanence and improved the impact toughness of sintered magnets. The optimum impact toughness of sintered magnets was achieved when 1.0 at% Tb was incorporated. The possible reasons for increasing the intrinsic coercivity and improving impact toughness of sintered magnets were analyzed, and the relations between the microstructure and impact toughness of sintered magnets were studied.  相似文献   

20.
We report on photoluminescence and Raman studies of Xe ion-implanted diamond. Several natural and high-purity artificial diamonds implanted within the wide dose range of 1010-5×1014 ion/cm2 were studied. The room temperature luminescence of the Xe center consists of two zero phonon lines, at 813 nm (strong) and 794 nm (weak). The dose dependences of photoluminescence and Raman spectra were studied. For doses less than 1013 ion/cm2, the luminescence intensity grows with the implantation dose linearly. The defect-induced photoluminescence quenching was observed for doses equal or more than 1013 ion/cm2. Possible models of the Xe center will be discussed. The nature of damages induced by ion implantation at different doses was analyzed using micro-Raman spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号