首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We give sufficient conditions for the Lebesgue integrability of the Fourier transform of a function fL p (?) for some 1 < p ≤ 2. These sufficient conditions are in terms of the L p integral modulus of continuity of f; in particular, they apply for functions in the integral Lipschitz class Lip(α, p) and for functions of bounded s-variation for some 0 < s < p. Our theorems are nonperiodic versions of the classical theorems of Bernstein, Szász, Zygmund and Salem, and recent theorems of Gogoladze and Meskhia on the absolute convergence of Fourier series.  相似文献   

2.
The space of toroidal automorphic forms was introduced by Zagier in 1979. Let F be a global field. An automorphic form on GL(2) is toroidal if it has vanishing constant Fourier coefficients along all embedded non-split tori. The interest in this space stems from the fact (amongst others) that an Eisenstein series of weight s is toroidal if s is a non-trivial zero of the zeta function, and thus a connection with the Riemann hypothesis is established. In this paper, we concentrate on the function field case. We show the following results. The (n ?1)-th derivative of a non-trivial Eisenstein series of weight s and Hecke character x is toroidal if and only if L(x, s+1/2) vanishes in s to order at least n (for the “only if” part we assume that the characteristic of F is odd). There are no non-trivial toroidal residues of Eisenstein series. The dimension of the space of derivatives of unramified Eisenstein series equals h(g ?1)+1 if the characteristic is not 2; in characteristic 2, the dimension is bounded from below by this number. Here g is the genus and h is the class number of F. The space of toroidal automorphic forms is an admissible representation and every irreducible subquotient is tempered.  相似文献   

3.
We prove a Lipschitz type summation formula with periodic coefficients. Using this formula, representations of the values at positive integers of Dirichlet L-functions with periodic coefficients are obtained in terms of Bernoulli numbers and certain sums involving essentially the discrete Fourier transform of the periodic function forming the coefficients. The non-vanishing of these L-functions at s = 1 are then investigated. There are additional applications to the Fourier expansions of Eisenstein series over congruence subgroups of \({SL_2(\mathbb{Z})}\) and derivatives of such Eisenstein series. Examples of a family of Eisenstein series with a high frequency of vanishing Fourier coefficients are given.  相似文献   

4.
This paper is on density estimation on the 2-sphere, S2, using the orthogonal series estimator corresponding to spherical harmonics. In the standard approach of truncating the Fourier series of the empirical density, the Fourier transform is replaced with a version of the discrete fast spherical Fourier transform, as developed by Driscoll and Healy. The fast transform only applies to quantitative data on a regular grid. We will apply a kernel operator to the empirical density, to produce a function whose values at the vertices of such a grid will be the basis for the density estimation. The proposed estimation procedure also contains a deconvolution step, in order to reduce the bias introduced by the initial kernel operator. The main issue is to find necessary conditions on the involved discretization and the bandwidth of the kernel operator, to preserve the rate of convergence that can be achieved by the usual computationally intensive Fourier transform. Density estimation is considered in L2(S2) and more generally in Sobolev spaces Hv(S2), any v?0, with the regularity assumption that the probability density to be estimated belongs to Hs(S2) for some s>v. The proposed technique to estimate the Fourier transform of an unknown density keeps computing cost down to order O(n), where n denotes the sample size.  相似文献   

5.
The cascade algorithm plays an important role in computer graphics and wavelet analysis.In this paper,we first investigate the convergence of cascade algorithms associated with a polynomially decaying mask and a general dilation matrix in L p (R s) (1 p ∞) spaces,and then we give an error estimate of the cascade algorithms associated with truncated masks.It is proved that under some appropriate conditions if the cascade algorithm associated with a polynomially decaying mask converges in the L p-norm,then the cascade algorithms associated with the truncated masks also converge in the L p-norm.Moreover,the error between the two resulting limit functions is estimated in terms of the masks.  相似文献   

6.
For the orthogonal systems ofHaar type, introduced by Vilenkin in 1958, we study absolute convergence of series composed from positive powers of Fourier coefficients with multiplicators from the Gogoladze–Meskhia class. The conditions for convergence of the series are given in terms of either best approximations of functions in L p spaces by polynomials with respect to Haar type systems or fractional modulus of continuity for functions from the Wiener spaces V p , p > 1. We establish the sharpness of the obtained results.  相似文献   

7.
Error estimates for scattered data interpolation by “shifts” of a conditionally positive definite function (CPD) for target functions in its native space, which is its associated reproducing kernel Hilbert space (RKHS), have been known for a long time. Regardless of the underlying manifold, for example ℝn or S n, these error estimates are determined by the rate of decay of the Fourier transform (or Fourier series) of the CPD. This paper deals with the restriction of radial basis functions (RBFs), which are radial CPD functions on ℝn+1, to the unit sphere S n. In the paper, we first strengthen a result derived by two of us concerning an explicit representation of the Fourier–Legendre coefficients of the restriction in terms of the Fourier transform of the RBF. In addition, for RBFs that are related to completely monotonic functions, we derive a new integral representation for these coefficients in terms of the measure generating the completely monotonic function. These representations are then utilized to show that if an RBF has a native space equivalent to a Sobolev space H s(ℝn+1), then the restriction to S n has a native space equivalent to H s−1/2(S n). In addition, they are used to recover the asymptotic behavior of such coefficients for a wide variety of RBFs. Some of these were known earlier. Joseph D. Ward: Francis J. Narcowich: Research supported by grant DMS-0204449 from the National Science Foundation.  相似文献   

8.
We consider functions of two variables of bounded p-variation of the Hardy type on the unit square. For these functions we obtain a sufficient condition for the absolute convergence of series of positive powers of Fourier coefficients with power-type weights with respect to the double Haar system. This condition implies those for the absolute convergence of series of Fourier-Haar coefficients of one-variable functions which have a bounded Wiener p-variation or belong to the class Lip ??. We show that the obtained results are unimprovable. We also formulate N-dimensional analogs of the main result and its corollaries.  相似文献   

9.
Motivated by the recent work on the non-harmonic Fourier atoms initiated by T. Qian and the non-harmonic Fourier series which originated from the celebrated work of Paley and Wiener, we introduce an integral version of the non-harmonic Fourier series, called Chirp transform. As an integral transform with kernel ei?(t)θ(ω), the Chirp transform is an unitary isometry from L2(R,d?) onto L2(R,dθ) and it can be explicitly defined in terms of generalized Hermite polynomials. The corresponding Chirp series take einθ(t) as a basis which in some sense is dual to the theory of non-harmonic Fourier series which take eiλnt as a basis. The Chirp version of the Shannon sampling theorem and the Poisson summation formula are also considered by dealing with sampling points which may non-equally distributed. Since the Chirp transform interchanges weighted derivatives into multiplications, it plays a role in solving certain differential equations with variable coefficients. In addition, we extend T. Qian's theorem on the characterization of a measure to be a linear combination of a number of harmonic measures on the unit disc with positive integer coefficients to that with positive rational coefficients.  相似文献   

10.
We prove a Lipschitz type summation formula with periodic coefficients. Using this formula, representations of the values at positive integers of Dirichlet L-functions with periodic coefficients are obtained in terms of Bernoulli numbers and certain sums involving essentially the discrete Fourier transform of the periodic function forming the coefficients. The non-vanishing of these L-functions at s = 1 are then investigated. There are additional applications to the Fourier expansions of Eisenstein series over congruence subgroups of SL2(\mathbbZ){SL_2(\mathbb{Z})} and derivatives of such Eisenstein series. Examples of a family of Eisenstein series with a high frequency of vanishing Fourier coefficients are given.  相似文献   

11.
An algorithm is proposed for the numerical integration of an arbitrary function represent-able as a sum of an absolutely converging multiple trigonometric Fourier series. The resulting quadrature formulas have identical weights, and the nodes form a Korobov grid that is completely defined by two positive integers, of which one is the number of nodes. In the case of classes of functions with dominant mixed smoothness, it is shown that the algorithm is almost optimal in the sense that the construction of a grid of N nodes requires far fewer elementary arithmetic operations than NlnlnN. Solutions of related problems are also given.  相似文献   

12.
We study power series whose coefficients are holomorphic functions of another complex variable and a nonnegative real parameter s, and are given by a differential recursion equation. For positive integer s, series of this form naturally occur as formal solutions of some partial differential equations with constant coefficients, while for s=0 they satisfy certain perturbed linear ordinary differential equations. For arbitrary s?0, these series solve a differential-integral equation. Such power series, in general, are not multisummable. However, we shall prove existence of solutions of the same differential-integral equation that in sectors of, in general, maximal opening have the formal series as their asymptotic expansion. Furthermore, we shall indicate that the solutions so obtained can be related to one another in a fairly explicit manner, thus exhibiting a Stokes phenomenon.  相似文献   

13.
We approximate d-variate functions from weighted Korobov spaces with the error of approximation defined in the L sense. We study lattice algorithms and consider the worst-case setting in which the error is defined by its worst-case behavior over the unit ball of the space of functions. A lattice algorithm is specified by a generating (integer) vector. We propose three choices of such vectors, each corresponding to a different search criterion in the component-by-component construction. We present worst-case error bounds that go to zero polynomially with n ?1, where n is the number of function values used by the lattice algorithm. Under some assumptions on the weights of the function space, the worst-case error bounds are also polynomial in d, in which case we have (polynomial) tractability, or even independent of d, in which case we have strong (polynomial) tractability. We discuss the exponents of n ?1 and stress that we do not know if these exponents can be improved.  相似文献   

14.
We develop a theory for Eisenstein series to the septic base, which was started by S. Ramanujan in his “Lost Notebook.” We show that two types of septic Eisenstein series may be parameterized in terms of the septic theta function and the eta quotient η4(7τ)/η4(τ). This is accomplished by constructing elliptic functions which have the septic Eisenstein series as Taylor coefficients. The elliptic functions are shown to be solutions of a differential equation, and this leads to a recurrence relation for the septic Eisenstein series.  相似文献   

15.
In this paper we present a numerical method for solving the Dirichlet problem for a two-dimensional wave equation. We analyze the ill-posedness of the problem and construct a regularization algorithm. Using the Fourier series expansion with respect to one variable, we reduce the problem to a sequence of Dirichlet problems for one-dimensional wave equations. The first stage of regularization consists in selecting a finite number of problems from this sequence. Each of the selected Dirichlet problems is formulated as an inverse problem Aq = f with respect to a direct (well-posed) problem. We derive formulas for singular values of the operator A in the case of constant coefficients and analyze their behavior to judge the degree of ill-posedness of the corresponding problem. The problem Aq = f on a uniform grid is reduced to a system of linear algebraic equations A ll q = F. Using the singular value decomposition, we find singular values of the matrix A ll and develop a numerical algorithm for constructing the r-solution of the original problem. This algorithm was tested on a discrete problem with relatively small number of grid nodes. To improve the calculated r-solution, we applied optimization but observed no noticeable changes. The results of computational experiments are illustrated.  相似文献   

16.
We present simple trace formulas for Hecke operators Tk(p) for all p>3 on Sk(Γ0(3)) and Sk(Γ0(9)), the spaces of cusp forms of weight k and levels 3 and 9. These formulas can be expressed in terms of special values of Gaussian hypergeometric series and lend themselves to recursive expressions in terms of traces of Hecke operators on spaces of lower weight. Along the way, we show how to express the traces of Frobenius of a family of elliptic curves equipped with a 3-torsion point as special values of a Gaussian hypergeometric series over Fq, when . As an application, we use these formulas to provide a simple expression for the Fourier coefficients of η8(3z), the unique normalized cusp form of weight 4 and level 9, and then show that the number of points on a certain threefold is expressible in terms of these coefficients.  相似文献   

17.
We study the smoothness property of a function f with absolutely convergent Fourier series, and give best possible sufficient conditions in terms of its Fourier coefficients to ensure that f belongs either to one of the Lipschitz classes Lip(α) and lip(α) for some 0<α?1, or to one of the Zygmund classes Λ(1) and λ(1). Our theorems generalize some of those by Boas [R.P. Boas Jr., Fourier series with positive coefficients, J. Math. Anal. Appl. 17 (1967) 463-483] and one by Németh [J. Németh, Fourier series with positive coefficients and generalized Lipschitz classes, Acta Sci. Math. (Szeged) 54 (1990) 291-304]. We also prove a localized version of a theorem by Paley [R.E.A.C. Paley, On Fourier series with positive coefficients, J. London Math. Soc. 7 (1932) 205-208] on the existence and continuity of the derivative of f.  相似文献   

18.
In this paper we study lattice rules which are cubature formulae to approximate integrands over the unit cube [0,1] s from a weighted reproducing kernel Hilbert space. We assume that the weights are independent random variables with a given mean and variance for two reasons stemming from practical applications: (i) It is usually not known in practice how to choose the weights. Thus by assuming that the weights are random variables, we obtain robust constructions (with respect to the weights) of lattice rules. This, to some extend, removes the necessity to carefully choose the weights. (ii) In practice it is convenient to use the same lattice rule for many different integrands. The best choice of weights for each integrand may vary to some degree, hence considering the weights random variables does justice to how lattice rules are used in applications. In this paper the worst-case error is therefore a random variable depending on random weights. We show how one can construct lattice rules which perform well for weights taken from a set with large measure. Such lattice rules are therefore robust with respect to certain changes in the weights. The construction algorithm uses the component-by-component (cbc) idea based on two criteria, one using the mean of the worst case error and the second criterion using a bound on the variance of the worst-case error. We call the new algorithm the cbc2c (component-by-component with 2 constraints) algorithm. We also study a generalized version which uses r constraints which we call the cbcrc (component-by-component with r constraints) algorithm. We show that lattice rules generated by the cbcrc algorithm simultaneously work well for all weights in a subspace spanned by the chosen weights ?? (1), . . . , ?? (r). Thus, in applications, instead of finding one set of weights, it is enough to find a convex polytope in which the optimal weights lie. The price for this method is a factor r in the upper bound on the error and in the construction cost of the lattice rule. Thus the burden of determining one set of weights very precisely can be shifted to the construction of good lattice rules. Numerical results indicate the benefit of using the cbc2c algorithm for certain choices of weights.  相似文献   

19.
The paper considers a problem of approximation of functions by means of their finite number of Fourier coefficients. Convergence acceleration of approximations by the truncated Fourier series is achieved by application of polynomial and rational correction functions. Rational corrections include unknown parameters whose determination is a crucial problem. We consider an approach connected with the roots of the Laguerre polynomials and study the rates of convergence of such approximations.  相似文献   

20.
Consider a planar grid of size w×n. The vertices of the grid are called terminals and pairwise disjoint sets of terminals are called nets. We aim at routing all nets in a cubic grid (above the original grid holding the terminals) in a vertex-disjoint way. However, to ensure solvability, it is allowed to extend the length and the width of the original grid to w=sw and n=sn by introducing s-1 pieces of empty rows and columns between every two consecutive rows and columns containing the terminals. Hence the routing is to be realized in a cubic grid of size (s·n)×(s·wh. The objective is to minimize the height h. It is easy to show that the required height can be as large as h=Ω(max(n,w)) in the worst case. In this paper we show that if s≥2 then a routing with height can always be found in polynomial time. Furthermore, the constant factor ‘6’ can be improved either by increasing the value of s or by limiting the number of terminals in a net. Possible trade-offs between s and h are discussed and the various constructions presented are compared by measuring the volumes of the routings obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号