首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Mesoporous TiO2 nanocrystalline film was formed on fluorine‐doped tin oxide electrode (TiO2/FTO) and gold nanoparticles (NPs) of different sizes were loaded onto the surface with the loading amount kept constant (Au/TiO2/FTO). Visible‐light irradiation (λ>430 nm) of the Au/TiO2/FTO photoanode in a photoelectrochemical cell with the structure of photoanode|0.1 m NaClO4 aqueous solution|Ag/AgCl (reference electrode)|glassy carbon (cathode) leads to the oxidation of water to oxygen (O2). We show that the visible‐light activity of the Au/TiO2/FTO anode increases with a decrease in Au particle size (d) at 2.9≤d≤11.9 nm due to the enhancement of the charge separation and increasing photoelectrocatalytic activity.  相似文献   

2.
By using bifunctional surface modifiers (SH-R-COOH), CdSe quantum dots (QDs) have been assembled onto mesoscopic TiO(2) films. Upon visible light excitation, CdSe QDs inject electrons into TiO(2) nanocrystallites. Femtosecond transient absorption as well as emission quenching experiments confirm the injection from the excited state of CdSe QDs into TiO(2) nanoparticles. Electron transfer from the thermally relaxed s-state occurs over a wide range of rate constant values between 7.3 x 10(9) and 1.95 x 10(11) s(-1). The injected charge carriers in a CdSe-modified TiO(2) film can be collected at a conducting electrode to generate a photocurrent. The TiO(2)-CdSe composite, when employed as a photoanode in a photoelectrochemical cell, exhibits a photon-to-charge carrier generation efficiency of 12%. Significant loss of electrons occurs due to scattering as well as charge recombination at TiO(2)/CdSe interfaces and internal TiO(2) grain boundaries.  相似文献   

3.
A novel strategy was designed to prepare Ag cluster-doped TiO(2) nanoparticles (Ag/TiO(2) NPs) without addition of any chemical reducing agent and/or organic additive. A defect-rich TiO(x) species was generated by laser ablation in liquid (LAL) of a Ti target. The silver ions could be reduced and deposited on the surface of TiO(2) NPs through the removal of oxygen vacancies and defects; the TiO(x) species evolved into anatase NPs in a hydrothermal treatment process. The derived Ag/TiO(2) NPs are approximately 25 nm in size, with narrow size distribution. The Ag clusters are highly dispersed inside TiO(2) and less than 3 nm in size. The doped amount can be tuned by changing the concentration of Ag(+) ions. The as-synthesized Ag/TiO(2) NPs display improved photocatalytic efficiency toward pentachlorophenol (PCP) degradation.  相似文献   

4.
Electron transfer dynamics in a photoactive coating made of CdSe quantum dots (QDs) and Au nanoparticles (NPs) tethered to a framework of ionic liquid functionalized graphene oxide (FGO) nanosheets and mesoporous titania (TiO(2)) was studied. High resolution transmission electron microscopy analyses on TiO(2)/CdSe/FGO/Au not only revealed the linker mediated binding of CdSe QDs with TiO(2) but also, surprisingly, revealed a nanoscale connectivity between CdSe QDs, Au NPs and TiO(2) with FGO nanosheets, achieved by a simple solution processing method. Time resolved fluorescence decay experiments coupled with the systematic quenching of CdSe emission by Au NPs or FGO nanosheets or by a combination of the latter two provide concrete evidences favoring the most likely pathway of ultrafast decay of excited CdSe in the composite to be a relay mechanism. A balance between energetics and kinetics of the system is realized by alignment of conduction band edges, whereby, CdSe QDs inject photogenerated electrons into the conduction band of TiO(2), from where, electrons are promptly transferred to FGO nanosheets and then through Au NPs to the current collector. Conductive-atomic force microscopy also provided a direct correlation between the local nanostructure and the enhanced ability of composite to conduct electrons. Point contact I-V measurements and average photoconductivity results demonstrated the current distribution as well as the population of conducting domains to be uniform across the TiO(2)/CdSe/FGO/Au composite, thus validating the higher photocurrent generation. A six-fold enhancement in photocurrent and a 100 mV increment in photovoltage combined with an incident photon to current conversion efficiency of 27%, achieved in the composite, compared to the inferior performance of the TiO(2)/CdSe/Au composite imply that FGO nanosheets and Au NPs work in tandem to promote charge separation and furnish less impeded pathways for electron transfer and transport. Such a hierarchical rapid electron transfer model can be adapted to other nanostructures as well, as they can favorably impact photoelectrochemical performance.  相似文献   

5.
Designing the photoanode structure in dye‐sensitized solar cells (DSSCs) is vital to realizing enhanced power conversion efficiency (PCE). Herein, novel multifunctional silver‐decorated porous titanium dioxide nanofibers (Ag/pTiO2 NFs) made by simple electrospinning, etching, and chemical reduction processes are introduced. The Ag/pTiO2 NFs with a high surface area of 163 m2 g?1 provided sufficient dye adsorption for light harvesting. Moreover, the approximately 200 nm diameter and rough surface of the Ag/pTiO2 NFs offered enough light scattering, and the enlarged interpores among the NFs in the photoanode also permitted electrolyte circulation. Ag nanoparticles (NPs) were well dispersed on the surface of the TiO2 NFs, which prevented aggregation of the Ag NPs after calcination. Furthermore, a localized surface plasmon resonance effect by the Ag NPs served to increase the light absorption at visible wavelengths. The surface area and amount of Ag NPs was optimized. The PCE of pTiO2 NF‐based DSSCs was 27 % higher (from 6.2 to 7.9 %) than for pure TiO2 NFs, whereas the PCE of Ag/pTiO2 NF‐based DSSCs increased by about 12 % (from 7.9 to 8.8 %). Thus, the PCE of the multifunctional pTiO2 NFs was improved by 42 %, that is, from 6.2 to 8.8 %.  相似文献   

6.
We were able to attach CdSe quantum dots (QDs) having a ZnS inorganic glue layer directly to a mesoporous TiO(2) (mp-TiO(2)) surface by spray coating and thermal annealing. Quantum-dot-sensitized solar cells based on CdSe QDs having ZnS as the inorganic glue layer could easily transport generated charge carriers because of the intimate bonding between CdSe and mp-TiO(2). The application of spray pyrolysis deposition (SPD) to obtain additional CdSe layers improved the performance characteristics to V(oc) = 0.45 V, J(sc) = 10.7 mA/cm(2), fill factor = 35.8%, and power conversion efficiency = 1.7%. Furthermore, ZnS post-treatment improved the device performance to V(oc) = 0.57 V, J(sc) = 11.2 mA/cm(2), fill factor = 35.4%, and power conversion efficiency = 2.2%.  相似文献   

7.
本文合成了两个结构新颖的三芳基咪唑类化合物5(Im)和6(Bn-Im),然后通过1,3-偶极化反应合成了C60吡咯烷衍生物7(Im-C60)和8(Bn-Im-C60),用MS, NMR, IR 等对其结构进行了表征。初次组装了七个太阳能电池,结构分别为FTO/TiO2/CdSe/Pt, FTO/TiO2/C60/Pt,FTO/TiO2/Im-C60/Pt,FTO/TiO2/ Bn-Im-C60/Pt, FTO/TiO2/C60-CdSe/Pt,FTO/TiO2/Im-C60-CdSe/Pt和FTO/TiO2/Bn-Im-C60-CdSe /Pt,对其光电性能进行了表征,结果表明:与CdSe敏化太阳能电池相比,以Im-C60-CdSe和Bn-Im-C60-CdSe为敏化剂的电池效率分别增加了5.28%和40.08%。  相似文献   

8.
Nanostructured AgI/TiO(2) photocatalyst was synthesized by a feasible approach with AgNO(3), LiI, and Ti(OBu)(4) and characterized by X-ray diffraction, transmission electron microscopy, angle-dependent X-ray photoelectron spectroscopy, diffusive reflectance UV-vis spectroscopy, Raman spectroscopy, photoluminescence, and the Brunauer-Emmett-Teller technique. The results of characterization reveal that the nanostructured AgI/TiO(2) has a novel core/shell/shell nanostructure of AgI/Ag-I(2)/TiO(2). Compared with TiO(2) (P25) supported AgI, the formation of the nanostructure results in substantial shifting of the absorption edge of AgI to red, enhancement of the absorption intensity, and the appearance of a strong tail absorption above 490 nm, which is assigned to the absorption of I(2) and Ag. Photocatalytic tests show that the nanostructured AgI/TiO(2) photocatalyst exhibited very high visible-light-induced photocatalytic activity for the photodegradation of crystal violet and 4-chlorophenol, which is 4 and 6 times higher than that of P25 titania supported AgI, respectively. The highly efficient visible-light-induced photocatalytic activity of the nanostructured AgI/TiO(2) is attributed to its strong absorption in the visible region and low recombination rate of the electron-hole pair due to the synergetic effect among the components of AgI, Ag, I(20, and TiO(2) in the nanostructured AgI/TiO(2).  相似文献   

9.
10.
Porous Ag2S sensitized TiO2 catalysts were synthesized by the hydrothermal process.The crystallization and porous structure of the Ag2S/TiO2 composite photocatalysts were investigated by X-ray diffraction,scanning electron microscopy with energy dispersive X-ray analysis,UV-Vis diffuse reflectance spectroscopy,and N2 adsorption.The Ag2S/TiO2 composites were mainly composed of anatase TiO2 and acanthite Ag2S.The absorption edge wavelengths of TiO2 and the Ag2S/TiO2 composite prepared with 3 mmol Na2S.5H2O were 400 and 800 nm,respectively,that is,the absorption edge of the composite had a pronounced red shift.The photocatalytic activity under visible light was investigated by the degradation of methylene blue with a UV-Vis spectrophotometer.The photocatalytic activities under visible light of the Ag2S/TiO2 photocatalysts were much higher than that of TiO2.  相似文献   

11.
Biocompatible hyperbranched polyglycidol (HBP) has been demonstrated to be an effective reducing and stabilizing agent for the synthesis of highly water-soluble monometallic (Au, Ag, Pt, Pd, and Ru) and bimetallic (Au/Pt, Au/Pd, and Au/Ru) nanoparticles (NPs), which provides a general and green protocol to fabricate metal NPs. The HBP-assisted reduction of metal ions follows an analogous polyol process. The reduction reaction rate increases sharply by increasing the temperature and the molecular weight of HBP. The size of NPs is controllable simply by changing the concentration of the metal precursor. High molecular weight HBP is favorable for the formation of NPs with uniform size and improved stability. By utilizing hydroxyl groups in the HBP-passivation layer of Au NPs, TiO(2)/Au, GeO(2)/Au, and SiO(2)/Au nanohybrids are also fabricated via sol-gel processes, which sets a typical example for the creation of versatile metal NPs/inorganic oxide hybrids based on the as-prepared multifunctional NPs.  相似文献   

12.
通过高温煅烧将二氧化钛纳米颗粒(TiO2 NPs)修饰到ITO电极表面制成TiO2 NPs/ITO电极, 再采用连续离子层吸附反应(SILAR)循环将硫化铅量子点(PbS QDs)修饰到TiO2/ITO电极表面制得PbS QDs/TiO2 NPs/ITO电极, 并将该电极应用于检测谷胱甘肽(GSH)的光电化学传感器. 在该传感器中, 当PbS QDs受470 nm可见光的激发时将产生电子(e)和光生空穴(h +), 光生空穴可被溶液中的GSH捕获, 并将GSH氧化成GSSH, 有效避免电子和空穴的复合, 显著提高了光电效率. 该传感器对GSH的检测具有较高的灵敏度和选择性, 线性检测范围为0.06~1 mmol/L, 检出限(LOD)为4.6×10 -3 mmol/L(S/N=3).  相似文献   

13.
A facile development of highly efficient Pt-TiO(2) nanostructured films via versatile gas-phase deposition methods is described. The films have a unique one-dimensional (1D) structure of TiO(2) single crystals coated with ultrafine Pt nanoparticles (NPs, 0.5-2 nm) and exhibit extremely high CO(2) photoreduction efficiency with selective formation of methane (the maximum CH(4) yield of 1361 μmol/g-cat/h). The fast electron-transfer rate in TiO(2) single crystals and the efficient electron-hole separation by the Pt NPs were the main reasons attributable for the enhancement, where the size of the Pt NPs and the unique 1D structure of TiO(2) single crystals played an important role.  相似文献   

14.
Liu F  Meyer GJ 《Inorganic chemistry》2003,42(23):7351-7353
The coordination compound Ru(NH(3))(5)(eina)(PF(6))(2), where eina is ethyl isonicotinate, was synthesized and attached to optically transparent nanocrystalline (anatase) TiO(2) films, abbreviated Ru(NH(3))(5)(eina)/TiO(2). The metal-to-ligand-charge-transfer (MLCT) absorption was found to shift in wavelength with solvent. The absorption maximum of the low energy MLCT band was observed at 486 nm in acetonitrile and 528 nm in dimethylformamide for Ru(NH(3))(5)(eina)(PF(6))(2) and at 512 and 555 nm for Ru(NH(3))(5)(eina)/TiO(2), respectively. The compound was found to be nonemissive with an excited state lifetime <10 ns under all conditions studied. Light excitation in fluid solution and when attached to insulating ZrO(2) films resulted in a loss of the MLCT absorption, consistent with ligand field photochemistry. Pulsed light excitation of Ru(NH(3))(5)(eina)/TiO(2) yields an absorption difference spectrum consistent with an interfacial charge separated state, Ru(III)(NH(3))(5)(eina)/TiO(2)(e(-)). This state forms within 10 ns and returns cleanly to ground state product within milliseconds. The injection quantum yields were determined by comparative actinometry and were found to be excitation wavelength dependent: phi(inj)(417 nm) = 0.30 +/- 0.05 and phi(inj)(532.5 nm) = 0.15 +/- 0.03. Regenerative solar cells based on Ru(NH(3))(5)(eina)/TiO(2) with 0.5 M TBAI, where TBA is tetrabutylammonium, and 0.05 M I(2) in acetonitrile were very inefficient. Sluggish iodide oxidation is expected, on the basis of the negative E degrees (Ru(III/II)) = +0.17 (V vs Ag/AgCl) reduction potential, and this presumably allows a greater fraction of the injected electrons to recombine with the oxidized compound thereby lowering the solar cell efficiency.  相似文献   

15.
Ag担载对TiO2光催化活性的影响   总被引:44,自引:0,他引:44  
 采用光化学沉积法合成了Ag/TiO2光催化剂,以苯酚降解反应考察了光催化剂活性随Ag担载量的变化,用TEM观察了Ag在TiO2表面的分布与形貌,以漫反射紫外-可见光谱(DRS)分析了不同Ag担载量的光催化剂的光谱特征. 结果表明,适宜担载量的Ag可显著提高TiO2的光催化活性. TEM观察显示,Ag在TiO2表面形成纳米级团簇结构,随Ag担载量的增加,团簇尺寸增大. DRS分析表明,Ag的担载对TiO2紫外区域的光谱特征没有影响. 根据Ag团簇的能级随其几何尺寸的变化分析了Ag担载量的变化对TiO2光催化活性的影响机理.  相似文献   

16.
Photodeposition of Ag nanoparticles on commercial TiO2 particles and nanoparticles was performed in order to provide direct visualization of the spatial distribution of photoactive sites on sub-micrometer-scale and nanoscale TiO2 particle surfaces and to create materials for potential catalytic applications. HRTEM (high-resolution transmission electron microscopy) and HAADF-STEM (high-angle annular dark-field scanning transmission electron microscopy) were used to characterize these materials. The size and spatial distributions of the Ag nanoparticles on the commercial TiO2 were not uniform; the concentration of Ag was higher on grain boundaries and at the edges of these submicrometer particles. In the case of TiO2 nanoparticles, the size distribution of the Ag nanoparticles deposited was relatively uniform and independent of irradiation time and photon energy. The amount of Ag deposited on TiO2 nanoparticles was at least 6 times higher than that on the commercial samples for comparable irradiation conditions. Compared to the case of Ag photodeposition, the difference in the amount of Au photodeposited on TiO2 particles and nanoparticles was even greater, especially at low precursor concentrations. Photodeposition on TiO2 nanoparticles is suggested as a potential method for the preparation of Au/TiO2 catalysts, as loadings in excess of 10 wt % of uniform 1 nm metal particles were achieved in this work.  相似文献   

17.
The photocatalytic one-electron oxidation reactions of aromatic sulfides using the carboxymethyl-beta-cyclodextrin (CM-beta-CD)-modified TiO(2) nanoparticles (TiO(2)/CM-beta-CD) were investigated by using nano- and femtosecond transient absorption spectroscopies. The one-electron oxidation processes of the substrate (S) by the valence band hole (h(VB) (+)) at the TiO(2) surface and the trapped hole at the adsorption site of the CM-beta-CD (h(CD) (+)) were examined. The transient absorption spectra and time traces observed for the charge carriers and the radical cation of S (S(.+)) revealed that the one-electron oxidation reaction of S during the nano- and femtosecond laser flash photolyses of TiO(2)/CM-beta-CD is significantly enhanced relative to bare TiO(2). The kinetics of the decay and the dimerization processes between S(.+)s are discussed on the basis of the results obtained by the pulse radiolysis technique.  相似文献   

18.
Dynamic light scattering has been employed to study the time evolution of a sodium bis(2-ethylhexyl) sulfosuccinate/isooctane/water/quercetin/AgNO3 system during the formation of reverse micelles (RMs), as well as water solubilization and formation of Ag nanoparticles (NPs) in them. It has been shown that physicochemical processes occurring in the reverse micellar system lead to the formation of light-scattering elements with average sizes of 0.67?2 nm (individual molecules of the surfactant and reductant), 2.5?4.5 nm (“dry” RMs) and 16?20 nm (RMs containing Ag NPs). The synthesis is accompanied by the formation of silver NPs with other sizes in an amount of less than 5%.  相似文献   

19.
Methyl radicals react in fast reactions, with rate constants k>1×10(8) M(-1) s(-1), with Au(0), Ag(0) and TiO(2) nanoparticles (NPs) dispersed in aqueous solutions to form intermediates, (NP)-(CH(3))(n), in which the methyl groups are covalently bound to the NPs. These intermediates decompose to form ethane. As n≥2 is required for the formation of C(2)H(6), the minimal lifetime (τ) of the methyls bound to the NPs, (NP)-CH(3), can be estimated from the rate of production of the CH(3)(·) radicals and the NPs concentration. The results obtained in this study, using a very low dose rate γ-source for NP = Ag(0), Au(0), and TiO(2) point out that τ of these intermediates is surprisingly long, for example, ≥8 and ≥188?sec for silver and gold, respectively. These data point out that the NP-C bond dissociation energies are ≥70?kJ mol(-1). Under low rates of production of CH(3)(·), that is, when the rate of formation of ethane is very low, other reactions may occur, consequently the mechanism proposed is "broken". This is observed in the present study only for TiO(2) NPs. These results have to be considered whenever alkyl radicals are formed near surfaces. Furthermore, the results point out that the rate of reaction of methyl radicals with (NP)-(CH(3))(n) depends on n, that is, the number of methyl radicals bound to the NPs affect the properties of the NPs.  相似文献   

20.
A novel architecture of CdS/ZnO nanorods with plasmonic silver (Ag) nanoparticles deposited at the interface of ZnO nanorods and CdS nanocrystallites, was designed as a photoanode for solar hydrogen generation, with photocurrent density achieving 4.7 mA/cm2 at 1.6 V (vs. RHE), which is 8 and 1.7 times as high as those of pure ZnO and CdS/ZnO nanorod films, respectively. Additionally, with optical absorption onset extended to ~660 nm, CdS/Ag/ZnO nanorod film exhibits significantly increased incident photo-to-current efficiency (IPCE) in the whole optical absorption region, reaching 23.1% and 9.8% at 400 nm and 500 nm, respectively. The PEC enhancement can be attributed to the one-dimensional ZnO nanorod structure maintained for superior charge transfer, and the extended visible-light absorption of CdS nanocrystallites. Moreover, the incorporated plasmonic Ag nanoparticles could further promote the interfacial charge carrier transfer process and enhance the optical absorption ability, due to its excellent plasmon resonance effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号