首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid phase deposition of silica in the presence of fullerenol C60(OH)n, results in the formation of uniform silica spheres, whereas the use of C60 gives large non-uniform agglomerates as a result of homogeneous nucleation. Raman and UV spectroscopy indicate the C60 is retained as the core of the silica spheres.  相似文献   

2.
This paper presents a "one-step" method to synthesize asymmetric hollow silica spheres. In this method, when positively charged polystyrene particles were blended with mercaptopropyltriethoxysilane and stirred at 50 °C in alkaline ethanol/water medium for a period of time, Janus or lobed asymmetric hollow silica spheres could be directly obtained, just changing the ratio of ethanol to water in the reaction medium. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to characterize the morphology and topography of the asymmetric hollow silica spheres. The formation mechanism was described in detail.  相似文献   

3.
《Mendeleev Communications》2020,30(6):809-811
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
  相似文献   

4.
Hollow spheres of phenolic resin/silica composite are synthesized by macroscopic phase separation of a sorbitan monooleate surfactant Span 80 during aerosol-assisted spraying. The cavity can be evolved from multiple compartments to single hollow cavity with the increase of Span 80 content. The composite shell becomes mesoporous due to the release of small molecules after thermal treatment above 350 °C. After further thermal treatment at a higher temperature for example 900 °C in nitrogen or 1,450 °C in argon, the carbon/silica composite hollow spheres or crystalline silicon carbide hollow spheres are derived, respectively. Compared to the pure phenolic resin-based carbon spheres, thermal stability of the carbon-based composite spheres in air is essentially improved by the introduction of inorganic component silica. The carbon-based composite hollow spheres combine both performances of easy mass transportation through macropores and high specific surface area of mesopores, which will be promising to support catalysts for fuel cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Synthesis of silica hollow spheres assisted by ultrasound   总被引:2,自引:0,他引:2  
A simple and effective method for synthesizing silica hollow spheres is presented. The synthesis utilizes vesicles from oppositely charged surfactants sodium dodecyl sulfate (SDS) and tetrapropylammonium bromide (TPAB) aqueous solution as template for the silica growth. Tetraethyl orthosilicate (TEOS) is added to the vesicular template as a precursor for the silica formation. Ultrasound was employed to accelerate the formation of vesicles template. The morphology of the silica spheres is uniform and well-defined (diameter: 200 nm-5 microm, wall thickness: 50 nm). The product was also characterized by FTIR, TG-DTA, N2 adsorption. TEM images reveal that the spheres have structure stability after calcinations at 550 degrees C.  相似文献   

6.
Solvothermal synthesis of hollow ZnS spheres   总被引:5,自引:0,他引:5  
Mono-dispersed semiconductor ZnS hollow spheres with the diameter of 300-500 nm and the shell thickness of about 100-150 nm have been synthesized successfully by solvothermal method from ethanol solution in the presence of a special surfactant-quaternary ammonium salt of 2-undecyl-1-dithioureido-ethyl-imidazoline (SUDEI) made in our lab. The mono-dispersed ZnS hollow spheres are characterized by XRD, size distribution investment, UV-vis, TEM, and SEM, respectively. The UV-vis measurement indicates that there is a broad absorption at 210-280 nm, which is likely to be caused by "hollow-effect." A growth mechanism of ZnS hollow spheres has also been put forward and discussed.  相似文献   

7.
《中国化学快报》2023,34(7):107858
Mesoporous silica hollow spheres with a homogenous and high content distribution of Fe and Co were synthesized by a facile one-pot hydrothermal process. The sub-nanometer bimetallic components inside the silica framework facilitate the stable fixation and the open accessibility to active sites. The co-doped Fe/Co in the spheres showed excellent peroxidase-like activity and much higher catalytic performance than their monometallic-supported spheres. The synergistic effect between Fe and Co promotes the continuous formation of functional radicals during the oxidation process and thus accelerates the reaction rate. When used for colorimetric detection of hydrogen peroxide (H2O2), the Fe/Co incorporated silica hollow spheres show the capability of detection of H2O2 in a wide range (10-250 µmol/L) and with the low detection limit of 0.012 ppm.  相似文献   

8.
Successful hydrothermal synthesis of pure ZSM-22 devoid of impurities is achieved under mild conditions of 433 K and horizontal stirring at 20 revolutions per minute (rpm) using Teflon-coated bar magnets to enhance gel mixing.  相似文献   

9.
Micron-scale hollow spheres were successfully constructed with silica nanoparticles by templating of polymer spheres. Subsequently, the use of 3-aminopropyltriethoxysilane (APTES) introduces carbon and oxygen defects in the silica nanoparticles resulting from calcination of the aminopropyl group. In this approach, the template of micron-scale polymer spheres was prepared from dispersion polymerization. Subsequent St?ber process results in the formation of a silica layer attached to the polymer sphere surfaces. After calcination, the obtained micron-scale hollow silica spheres were then studied on the relationship between the particle diameter and the surface morphology. The luminescence of hollow spheres was prepared through using APTES in St?ber process, and which of related the appearance of luminescence to the APTES concentration and calcination temperature. The results of this study can provide useful information for the structure of micron-scale hollow spheres and their application to luminescent materials.  相似文献   

10.
ZnO hollow spheres with diameters ranging from 400 to 600 nm and the thickness of shell approximate 80 nm were synthesized by a simple polyoxometalate-assisted solvothermal route without using any templates. The effect of polyoxometalate concentration, reaction time and temperature on the formation of the hollow spheres was investigated. The results indicated that the hollow spheres were composed of porous shells with nanoparticles and polyoxometalate play a key role in controlling morphology of ZnO. A possible growth mechanism based on polyoxometalate-assisted assembly and slow Ostwald ripening dissolution in ethanol solution is tentatively proposed. In addition, the room temperature photoluminescence spectrum showed that the ZnO hollow spheres exhibit exciting emission features with wide band covering nearly all the visible region.  相似文献   

11.
Here we report a facile and efficient method to prepare Pt spheres with hollow interior and nanosponge shell with high surface area. Such a unique Pt nanostructure can effectively improve the electrocatalytic performance of Pt catalysts by facilitating the access of electroactive species to the full-extent Pt surface.  相似文献   

12.
Highly ordered SBA-16-type mesoporous silica materials were synthesized by using poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer (EO(132)-PO(50)-EO(132), Pluronic F108) as template through a two-step pathway under mildly acidic conditions (pH 2.15-4.50). The highly ordered cage-like mesoporosity of the prepared SBA-16-type mesoporous silica materials having Im3m cubic mesostructure was proved by the well-defined X-ray diffraction patterns combined with transmission electron microscopy. Scanning electron microscopy shows a variation from the spherical agglomerations to the randomly shaped ones with an increase of pH value. The nitrogen adsorption-desorption analysis reveals that the prepared SBA-16-type mesoporous silica materials have a uniform small-sized pore diameter (3.37-4.24 nm) and very thick pore wall (8.84-10.2 nm). These features may make the SBA-16-type mesoporous silica materials synthesized in this study favor the incorporation of catalytically active heteroatoms in silica frameworks, and the functionalization of organic groups for applications in catalysis, sensor and separation. The two-step synthetic method under the mildly acidic conditions can also be extended to the production in the industrial scale as an environmentally friendly way.  相似文献   

13.
Hierarchically structured hydrogel hollow spheres with functional hydrogels located at desired sites are expected to have new properties. We have developed a facile swelling polymerization route using a polymer hollow sphere as template to synthesize hierarchically structured hydrogel hollow spheres. It is significant to pre-swell the template shell with good solvents, such as chloroform containing oil-soluble initiators to control interaction, thus, polymerization locus of different water-soluble functional monomers. Some representative hydrogel composite hollow spheres such as poly(N-isopropylarylamide) and poly(acrylic acid) with different morphologies have been synthesized. Hydrogels with functional groups can favorably complex with desired materials; hierarchically structured inorganic or polymer composite hollow spheres are synthesized by a sol–gel process of the inorganic precursor by using different hydrogel composite hollow spheres as templates.  相似文献   

14.
In order to decrease the swelling of Nafion® and reduce the dependency of proton conductivity on high relative humidity (RH), mesoporous hollow silica spheres were synthesized and dispersed in Nafion matrix as micro-water-tanks in the proton exchange membranes (PEM). The morphologies of MHSi and Nafion/MHSi composite membranes are characterized by SEM and TEM. The effects of MHSi on water uptake, swelling, dehydration rate and proton conductivity of the composite membranes were investigated. The results show that, with a suitable portion of MHSi in the membrane, composite PEMs with enhanced water uptake, reduced swelling and improved proton conductivity are obtained.  相似文献   

15.
In this work, we report an efficient method to produce pure hollow silica spheres (HSS) using phenyltrimethoxysilane (PTMS) compound. The production of HSS was carried out via hydrolysis of PTMS in the aqueous media and followed by a condensation reaction to form silica spheres with phenyl groups. The product was then calcined to remove phenyl groups and obtain pure silica spheres with >95% fine structure. The chemical nature of pure silica was confirmed by Fourier transforms infrared spectroscopy. The calcined HSS were stable beyond the temperature of 900 °C as confirmed by thermal gravimetric analysis (TGA). The calcined spheres preserved their spherical appearance and hollow core as shown by SEM and TEM micrographs. Interestingly, the average size of the spheres was reduced significantly after calcination from 760 to 510 nm, confirming further the removal of phenyl groups. The calcined HSS offered much higher surface area (As) when analysed by BET; As for calcined product was ~406 and mere ~4.8 m2/g for uncalcined HSS. Finally, drug release study of cisplatin/HSS showed over 45% of steady cumulative release for 72 h. The prepared HSS can be dispersed in water opening the possibility of many novel bio/non-bio applications.  相似文献   

16.
In present work, hollow silica spheres (HSS)/Nafion® composite membranes were prepared by solution casting. The thermal properties, water retention, swelling behavior and proton conductivity of the composite membranes were explored. It was found that HSS dispersed well at micrometer scale in the obtained composite membranes by SEM and TEM observation. Thermal properties of composite membranes were improved than that of recast Nafion® membrane. Compared with the recast Nafion® membrane, the composite membranes showed higher water uptake and lower swelling degree at the temperature range from 40 to 100 °C. At the same HSS loading, the smaller the diameter of HSS in composite membranes, the more the water uptake, however, the swelling degree of composite membranes was increased. The proton conductivity of the composite membrane with 3–5 wt.% HSS (120 and 250 nm) increased distinctively at above 60 °C, reached the optimal value at 100 °C, and decreased slowly when the temperature exceeded 100 °C.  相似文献   

17.
Budded silica spheres have been synthesized by a novel rapid evaporation-induced self-assembly combined with the well-known St?ber method. The morphology of budded silica spheres were examined by transmission electron microscopy, and their mean size and size distribution were also estimated. Both the temperature of the sol-gel reaction and following post-treatment were found to play crucial roles in determining the surface morphology of obtained silica spheres and the yield of budded silica spheres. The possible formation mechanism was also proposed on the basis of experimental observations. The budded silica spheres would have higher surface areas than smooth silica spheres, and significant potentials for catalyst supports, building blocks of photonic crystals, and for constructing superhydrophobic and superhydrophilic surfaces.  相似文献   

18.
张娟  王晴  李艺  李宝宗 《化学研究》2014,(3):280-283,287
合成了手性阳离子型两亲性小分子化合物,利用圆二色谱分析了其在水中形成的自组装体的结构;以该化合物的自组装体为模板,在正丙醇和氨水的混合溶剂中制备得到了介孔二氧化硅空心球;利用扫描电镜、透射电镜、X射线衍射仪以及氮气吸附-脱附试验装置分析了二氧化硅空心球的形貌及孔结构.结果表明,两亲性小分子在水中形成的自组装体呈现手性堆积;合成的介孔二氧化硅空心球的直径约为600~800nm,壁厚约为100~150nm,其孔道垂直于球的表面,孔径约为3.0nm,比表面积约为306m2·g-1.正丙醇作为模板控制二氧化硅空心球的空腔尺寸和形貌,而两亲性小分子的自组装体作为模板控制放射状孔道的形貌和尺寸.  相似文献   

19.
In this paper, we report a novel method for the fabrication of small monodisperse hollow silica spheres. In this approach, when silica shells were coated on polystyrene particles by the sol-gel method, the polystyrene cores were dissolved subsequently, even synchronously, in the same medium to form monodisperse hollow spheres. Neither additional dissolution nor a calcination process was needed to remove the polystyrene cores. Transmission electron microscopy, scanning electron microscopy, and porosity measurements were used to characterize the monodisperse hollow silica spheres.  相似文献   

20.
Hollow mesoporous silica nanoparticles (HMSNs) with the diameter in range of 100–500 nm and the wall thickness of about 50 nm were synthesized by templates of cetyltrimethylammonium bromide under the assistant of microfluidization technique. These HMSNs were demonstrated effective drug loading and a pH-responsive drug release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号