首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A velocity and absorption coefficient of sound for magnetic fluid (MF) based on water are studied in the frequency range of 12–132 MHz as a function of the concentration of dispersed phase, the uniform magnetic field, the storage time, and the temperature. The MF dispersed phase consist of magnetite Fe3O4 particles stabilized with sodium oleate. The parameters of sound propagation are measured within temperature interval 0–80°C. Densities of MF and sodium oleate are also measured as a function of temperature. Volume concentrations of magnetic fluid components (water, magnetite, and sodium oleate adsorbed on the surface of magnetic particles) are determined. Densities, heat capacities, coefficients of heat conductivity and thermal expansion of aggregates are estimated. Aggregate size distribution in the studied magnetic fluid is described by the log-normal function. Parameters characterizing the aggregate size distribution are determined and their interpretation is given.  相似文献   

2.
A new, convenient and economical method was established firstly, which took loaded polyaniline (PANI) carbon paper as the working electrode to real‐time characterize and analyze the electrochemical properties of the PANI synthesized by emulsion polymerization in constant magnetic field (MF, 0.4 T). The characterization results of the electrochemical properties of the PANI had been proved by contrast analysis of the thermal stability of conductivity, FT‐IR, XRD and TGA of the PANI. The experimental results of cyclic voltammogram, AC impedance, Tafel curve and electrochemical stability showed that the PANI synthesized in the presence of the MF had larger redox current, smaller charge resistance, higher corrosion potential and better electrochemical stability. The PANI thermal stability of conductivity had been measured in the temperature range from 20 to 140°C, and the results showed that the PANI synthesized in the presence of the MF had better thermal stability of conductivity. The results of FT‐IR, XRD and TGA indicated that the characteristic peaks of FT‐IR spectra of the PANI synthesized in the presence of the MF shifted to the lower wavenumbers, and its crystallinity and thermal stability were also improved.  相似文献   

3.
The kinetics of physical gelation in aqueous melamine formaldehyde (MF) resin solutions were studied with the aid of low-resolution 1H NMR T2 relaxation experiments in combination with both static and dynamic light-scattering measurements. The investigations were conducted on a series of MF resins with increasing degrees of condensation. We show that MF aggregates (aided by hydrogen bonds) were immediately formed upon cooling from reaction to room temperature, that is, storage temperature. Surprisingly, the growth of these aggregates, which eventually led to the formation of a physical gel, did not have a major effect on molecular mobility. By means of light-scattering experiments, we were able to monitor the increase of the size of MF aggregates as a function of storage time. The physically gelled MF solutions were subjected to heating and subsequent cooling runs and again studied by light-scattering and nuclear magnetic resonance (NMR) experiments. MF aggregates were destroyed, depending on the degree of condensation, in the temperature range 35–60 °C according to NMR, and 40–75 °C as determined by light scattering. The process of physical gelation was reversible; upon subsequent cooling, the MF aggregates were formed anew. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3307–3318, 1999  相似文献   

4.
The current investigation is centered on the thermal decomposition of iron(II) acetyl acetonate, Fe(C5H7O2)2, in a closed cell at 700 degrees C, which is conducted under a magnetic field (MF) of 10 T. The product is compared with a similar reaction that was carried out without a MF. This article shows how the reaction without a MF produces spherical Fe3O4 particles coated with carbon. The same reaction in the presence of a 10 T MF causes the rejection of the carbon from the surface of pyramid-shaped Fe3O4 particles, increases the Fe3O4 particle diameter, forms separate carbon particles, and leads to the formation of an anisotropic (long cigarlike) orientation of Fe3O4 pyramids and C sheets. The macroscopic orientation of Fe3O4 pyramids+C sheets is stable even after the removal of an external MF. The suggested process can be used to fabricate large arrays of uniform wires comprised of some magnetic nanoparticles, and to improve the magnetic properties of nanoscale magnetic materials. The probable mechanism is developed for the growth and assembly behavior of magnetic Fe3O4 pyramids+C sheets under an external MF. The effect of an applied MF to synthesize morphologically different, but structurally the same, products with mesoscopic organization is the key theme of the present paper.  相似文献   

5.
The current investigation is centered on the thermal decomposition (700 degrees C) of acetyl acetonates of Ni, Co, and Fe in a closed reactor that was conducted by employing an external magnetic field (MF) of 10T. Interestingly, reactions of Co and Ni acetyl acetonates under a 10T MF produce Co and Ni nanoparticles (NPs) coated with carbon, while Fe acetyl acetonate produces Fe3O4 uncoated with carbon. Additionally, it is observed that all the as-formed magnetic particles tend to align in one dimension along applied MF; thus, this process can be used to fabricate large arrays of magnetic nanoparticles. The effect of an applied MF to synthesize morphologically and compositionally different products from corresponding precursors with their mesoscopic organization is the key theme of the present paper, explained with a plausible mechanism.  相似文献   

6.
Effects of a static magnetic field on water and electrolyte solutions   总被引:1,自引:0,他引:1  
Water and electrolyte solutions were exposed for 5 min to a weak static magnetic field (B = 15 mT). Their conductivity and the amount of evaporated water were then measured as a function of time. Simultaneously, these quantities were determined for magnetically untreated samples, as reference systems. It was found that a magnetic field influences these two parameters and their changes depend on the thermodynamic functions of hydration of these ions. A roughly linear change in conductivity versus 'scaled' functions was obtained. On this basis it was concluded that the magnetic field causes changes in the hydration shells of the ions.  相似文献   

7.
为探讨蛋白质在磁化水中的水合作用,首先利用粘度测定及氧17核磁共振(17O-NMR)对经静磁场(MF)处理不同有效时间(teff)后的纯水进行了分析,进一步又利用差示扫描热量计(DSC)及NMR对溶解于磁化水的β-乳球蛋白(β-Lg)的水合特性进行了分析.随teff的增加,水分子的内能不断减小,处于氢键结合状态的水分子的比例不断增加.结果表明MF处理促进了水分子缔合结构的形成,这一点可能与氢键的形成有关.随teff的增加,β-Lg表面水分子的运动性没有明显变化,但β-Lg溶液中非自由结合水的含量不断增加.说明β-Lg的水合作用与水分子的缔合分布有关,该分布依存于水分子的氢键状态并可通过磁场处理加以改变.  相似文献   

8.
Corrosion of metals within magnetic field (MF) had been actively studied for better understanding of the corrosion mechanism when the magnetic sources are presented. However, findings regarding the effect of MF on metals are inconclusive, and there is a lack of studies of MF interaction with various corrosion control techniques, such as corrosion inhibitor. In this paper, the effect of MF on the corrosion of copper in 0.5 M hydrochloric acid (HCl) solution, with or without corrosion inhibitor were studied. Benzotriazole (BTA), a common copper inhibitor, was chosen as the inhibitor for this study. To determine the effect of MF, a MF of 13 mT, generated using a pair of permanent neodymium magnet, was applied during weight loss and electrochemical tests. The results showed that corrosion inhibition efficiency of BTA decreased when it is under an applied MF. A decrease from 47% to 60% in inhibition efficiency had been observed for all samples in an applied MF. By using Tafel extrapolation technique on the polarization curves, it revealed that MF had increased the corrosion current of copper in HCl, causing a decrease in the inhibition efficiency.  相似文献   

9.
Fire safety and thermal dissipation performance of epoxy resins thermosets were critical for its application in key fields such as electronic devices. The simultaneous improvement of flame retardant and thermal conductivity properties were still a challenge. Herein, ammonium polyphosphate (APP) was firstly encapsulated with 5‐wt% epoxy resins based on APP and then surface grafted with polyurethane polymer chain, and the resulting APP with core‐shell‐brush structure was constructed. Finally, the multiwalled carbon nanotube (MWCNT) was assembled in the intervals of polymer brush on APP surface, and the prepared filler was defined as MF‐APP. Its chemical structure and morphologies were characterized and confirmed. The wettability of MF‐APP was evaluated by water contact angles tests (WCA) and MF‐APP exhibited hydrophobic property with the WCA of 138°. When 9‐wt% MF‐APP was incorporated into EP thermosets, the thermal conductive value of EP/MF‐APP achieved 1.02 Wm?1 K?1, and the MWCNTs concentration was only 1.8 wt% in thermosets. Compared with the previous work, the prepared EP/MF‐APP thermosets exhibited outstanding thermal conductive efficiency because of the homogeneously distribution of MWCNTs. Moreover, the samples fulfilled UL‐94 V‐0 grade during vertical burning tests with the limiting oxygen index of 30.8%. As a result, the thermal conductivity and flame retardancy of EP thermosets were simultaneously enhanced with a relatively low addition amount of MF‐APP, which would bring more chance for wider application of EP thermosets in key fields.  相似文献   

10.
It is established that the working temperature range of a magnetic fluid (MF) stabilized with a mixture of oleic and linoleic acids is widened to −100°C and, when the linoleic acid mass fraction in the mixed surfactant is 10%, the fluid becomes unpolymerizable. The stability of the MF with respect to a coagulant (isopropanol) is studied. The dependence of the magnetic susceptibility of the stable fraction of the fluid on the volume fraction of the alcohol almost coincides with the data obtained for an MF stabilized with oleic acid. The MF is separated into coarse and finely dispersed fractions. The temperature dependence of the magnetic susceptibility is investigated for the coarse fraction at low temperatures. The magnetic susceptibility is shown to drastically decrease below −80°C because of the mechanical blocking of particles.  相似文献   

11.
Exposure to extremely low frequency (ELF) magnetic fields (MFs) has been reported to affect several cellular processes, including cell growth and differentiation. Other research has demonstrated that the pineal gland and its hormone melatonin have a wide spectrum of effects in cells and organs and can exert modulatory actions on cell proliferation and cell differentiation. Since ELF electric and magnetic fields have been shown to influence pineal activity and melatonin synthesis and/or function, it has been suggested that some of the reported effects of ELF MFs could be a consequence of the direct action of these fields on the pineal gland and/or melatonin function. Possible interactions between MFs and melatonin effects are in an early stage of investigation. In this study, we have investigated the influence of melatonin on the in vitro response of a subline of pheochromocytoma cells, PC12D, to a MF. Cells were exposed to the combined action of a physiological concentration (10−10 M) of melatonin and a vertical, 50 Hz, 40 mG rms MF for 23 h. At the end of the treatment, the percentages of neurite-bearing cells were determined by microscopic examination and compared with those from samples treated with the field alone or with melatonin alone. MF exposure alone significantly increased the neurite outgrowth when compared with negative controls, supporting previous results by Blackman and coworkers; this effect was not observed when melatonin was present in the medium from the onset of the exposure. Although the mechanisms of action of melatonin and ELF MFs at the cellular level remain unknown, the present data suggest that physiological levels of melatonin can prevent PC12D cells from responding to the MF stimulus.  相似文献   

12.
Conductive paints consisting of nickel powder (conductive material), solvent, and binder polymer were treated in a magnetic field. The efficiency of magnetic treatments on conductivity of coating films was evaluated. The effect of the following factors on conductivity of composite films by magnetic treatment was studied: metal powder concentration, magnetic flow density, time difference between film preparation and magnetic treatment, drying time of paint films, and effect of distance between terminals. Results showed that the volume resistivity of paint films treated magnetically was lower than that for untreated films at each nickel content. Magnetic treatment provided high conductivity even at low magnetic flow density, and conductivity increased with magnetic flow density.  相似文献   

13.
The two-body Slowly Relaxing Local Structure (SRLS) model was applied to (15)N NMR spin relaxation in proteins and compared with the commonly used original and extended model-free (MF) approaches. In MF, the dynamic modes are assumed to be decoupled, local ordering at the N-H sites is represented by generalized order parameters, and internal motions are described by effective correlation times. SRLS accounts for dynamical coupling between the global diffusion of the protein and the internal motion of the N-H bond vector. The local ordering associated with the coupling potential and the internal N-H diffusion are tensors with orientations that may be tilted relative to the global diffusion and magnetic frames. SRLS generates spectral density functions that differ from the MF formulas. The MF spectral densities can be regarded as limiting cases of the SRLS spectral density. SRLS-based model-fitting and model-selection schemes similar to the currently used MF-based ones were devised, and a correspondence between analogous SRLS and model-free parameters was established. It was found that experimental NMR data are sensitive to the presence of mixed modes. Our results showed that MF can significantly overestimate order parameters and underestimate local motion correlation times in proteins. The extent of these digressions in the derived microdynamic parameters is estimated in the various parameter ranges, and correlated with the time scale separation between local and global motions. The SRLS-based analysis was tested extensively on (15)N relaxation data from several isotropically tumbling proteins. The results of SRLS-based fitting are illustrated with RNase H from E. coli, a protein extensively studied previously with MF.  相似文献   

14.
Among the putative mechanisms, by which extremely low frequency (ELF) magnetic field (MF) may affect biological systems is that of increasing free radical life span in organisms. To test this hypothesis, we investigated whether ELF (60 Hz) MF can modulate antioxidant system in mouse brain by detecting chemiluminescence and measuring superoxide dismutase (SOD) activity in homogenates of the organ. Compared to sham exposed control group, lucigenin-initiated chemiluminescence in exposed group was not significantly increased. However, lucigenin-amplified t-butyl hydroperoxide (TBHP)-initiated brain homogenates chemiluminescence, was significantly increased in mouse exposed to 60 Hz, MF, 12 G for 3 h compared to sham exposed group. We also measured SOD activity, that plays a critical role of the antioxidant defensive system in brain. In the group exposed to 60 Hz, MF, 12 G for 3 h, brain SOD activity was significantly increased. These results suggest that 60 Hz, MF could deteriorate antioxidant defensive system by reactive oxygen species (ROS), other than superoxide radicals. Further studies are needed to identify the kind of ROS generated by the exposure to 60 Hz, MF and elucidate how MF can affect biological system in connection with oxidative stress.  相似文献   

15.
石英晶体微天平技术在苯胺乳液聚合动力学研究中的应用   总被引:1,自引:1,他引:0  
采用石英晶体微天平(QCM)技术, 探讨了在有无磁场条件下, 用过硫酸铵(APS)作为引发剂时苯胺的乳液聚合动力学行为. 研究结果表明, 苯胺的乳液聚合反应速率对苯胺(An)是一级反应; 对APS和十二烷基苯磺酸(DBSA)均为0.5级反应. 磁场环境中苯胺的聚合速率比在无磁环境中的要快. 在有无磁场条件下, 反应的表观活化能分别为40.4和41.6 kJ/mol. 结果表明, QCM技术可以作为研究An聚合动力学的一种有效方法.  相似文献   

16.
Mouse oocyte microfilaments (MF) were perturbed by depolymerization (cytochalasin B) or stabilization (jasplakinolide) and correlated meiotic defects examined by confocal microscopy. MF, microtubules, and mitochondria were vitally stained; centrosomes (gamma-tubulin), after fixation. MF depolymerization by cytochalasin in culture medium did not affect central migration of centrosomes, mitochondria, or nuclear breakdown (GVBD); some MF signal was localized around the germinal vesicle (GV). In maturation-blocking medium (containing IBMX), central movement was curtailed and cortical MF aggregations made the plasma membrane wavy. Occasional long MF suggested that not all MF were depolymerized. MF stabilization by jasplakinolide led to MF aggregations throughout the cytoplasm. GVBD occurred (unless IBMX was present) but no spindle formed. Over time, most oocytes constricted creating a dumbbell shape with MF concentrated under one-half of the oocyte cortex and on either side of the constriction. In IBMX medium, the MF-containing half of the dumbbell over time sequestered the GV, MF, mitochondria, and one to two large cortical centrosomes; the non-MF half appeared empty. Cumulus processes contacted the oocyte surface (detected by microtubule content) and mirrored MF distribution. Results demonstrated that MF play an essential role in meiosis, primarily through cortically mediated events, including centrosome localization, spindle (or GV) movement to the periphery, activation of (polar body) constriction, and establishment of oocyte polarity. The presence of a cortical "organizing pole" is hypothesized.  相似文献   

17.
The fabrication of desired anti-magnetic materials for irradiation shielding remains a challenge to date. In this work, a new type of dual-functional magnetic shielding phase change microcapsules with paraffin as the core, melamine-formaldehyde (MF) resin as the shell and doped with magnetic particles in the shell were successfully prepared by in situ polymerization. The magnetic particles were dispersed in the shell layer by coating a hydrophilic emulsifier on the surface. These microcapsules were specifically applied to the field of magnetic shielding by the screen printing method. The effect of magnetic particles on the performance of phase-change microcapsules was examined by differential scanning calorimetry and thermogravimetric analyses. The magnetic type and magnetic strength of the microcapsules were studied by the vibrating sample magnetometer. Moreover, the effects of different magnetic particles (Fe3O4, CrO2) on the performance of phase change microcapsules and the magnetic strength of microcapsules were compared. The results showed that these two kinds of magnetic particles can greatly improve the phase change latent heat, thermal stability, and thermal conductivity of the microcapsules. Finally, the great magnetic shielding role of these microcapsules was demonstrated in both static and pulsed magnetic fields through the screen printing of magnetic shielding ink on wallpaper. Incorporating 0.5 g Fe3O4 inside of microcapsules, specifically, the magnetic intensity was effectively reduced by ∼250 Oe within a short distance in the static field. We expect that these magnetic microcapsules hold great potential for the shielding of irradiations via the screen printing on various substrates.  相似文献   

18.
本文采用EHMO晶体轨道方法计算了第五主族氟化物高掺杂聚乙炔的能带结构参数,肯定了六氟化物为聚乙炔的有效导电掺杂剂.在进一步比较PF~6,AsF~6和SbF~6掺杂聚乙炔能带结构的基础上,满意地解释了掺杂物电导率实验测定的次序:AsF~6>SbF~6~PF~6.最后,本文又从P,As,Sb 的电负性和原子半径的角度讨论了这一次序的起因  相似文献   

19.
Methylene blue sensitized photopolymerization of acrylamide (AM) and methyl methacrylate (MMA) using triethanolamine or the sodium salt of EDTA as a reducing agent has been investigated under the influence of a magnetic field (0–7.3 kG). There was no effect of the magnetic field (MF) on the polymerization of AM and MMA in aqueous medium. However, in the water–methanol mixture (1 : 1) the yield of polymer decreases and the molecular weight increases in both cases under MF. This has been explained on the basis of the triplet mechanism. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1509–1513, 1998  相似文献   

20.
Effects of powerline frequency (50/60 Hz) electric and magnetic fields on the central nervous system may involve altered neurotransmitter release. This possibility was addressed by determining whether 60-Hz linearly polarized sinusoidal magnetic fields (MFs) alter the release of catecholamines from cultured bovine adrenal chromaffin cells, a well-characterized model of neural-type cells. Dishes of cells were placed in the center of each of two four-coil Merritt exposure systems that were enclosed within mu-metal chambers in matched incubators for simultaneous sham and MF exposure. Following 15-min MF exposure of the cells to flux densities of 0.01, 0.1, 1.0 or 2 mT, norepinephrine and epinephrine release were quantified by high-performance liquid chromatography (HPLC) coupled with electrochemical detection. No significant differences in the release of either norepinephrine or epinephrine were detected between sham-exposed cells and cells exposed to MFs in either the absence or presence of Bay K-8644 (2 microM) or dimethylphenylpiperazinium (DMPP, 10 microM). Consistent with these null findings is the lack of effect of MF exposure on calcium influx. We conclude that catecholamine release from chromaffin cells is not sensitive to 60-Hz MFs at magnetic flux densities in the 0.01-2 mT range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号