首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two‐dimensional multi‐phase model for immiscible binary fluid flow including moving immersed objects is presented. The fluid motion is described by the incompressible Navier–Stokes equation coupled with a phase‐field model based on van der Waals' free energy density and the Cahn–Hilliard equation. A new phase‐field boundary condition was implemented with minimization of the free energy in a direct way, to specifically improve the physical behavior of the contact line dynamics for moving immersed objects. Numerical stability and execution time were significantly improved by the use of the new boundary condition. Convergence toward the analytical solution was demonstrated for equilibrium contact angle, the Lucas–Washburn theory and Stefan's problem. The proposed model may be used for multi‐phase flow problems with moving boundaries of complex geometry, such as the penetration of fluid into a deformable, porous medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
For simulating freely moving problems, conventional immersed boundary‐lattice Boltzmann methods encounter two major difficulties of an extremely large flow domain and the incompressible limit. To remove these two difficulties, this work proposes an immersed boundary‐lattice Boltzmann flux solver (IB‐LBFS) in the arbitrary Lagragian–Eulerian (ALE) coordinates and establishes a dynamic similarity theory. In the ALE‐based IB‐LBFS, the flow filed is obtained by using the LBFS on a moving Cartesian mesh, and the no‐slip boundary condition is implemented by using the boundary condition‐enforced immersed boundary method. The velocity of the Cartesian mesh is set the same as the translational velocity of the freely moving object so that there is no relative motion between the plate center and the mesh. This enables the ALE‐based IB‐LBFS to study flows with a freely moving object in a large open flow domain. By normalizing the governing equations for the flow domain and the motion of rigid body, six non‐dimensional parameters are derived and maintained to be the same in both physical systems and the lattice Boltzmann framework. This similarity algorithm enables the lattice Boltzmann equation‐based solver to study a general freely moving problem within the incompressible limit. The proposed solver and dynamic similarity theory have been successfully validated by simulating the flow around an in‐line oscillating cylinder, single particle sedimentation, and flows with a freely falling plate. The obtained results agree well with both numerical and experimental data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A numerical fluid–structure interaction model is developed for the analysis of viscous flow over elastic membrane structures. The Navier–Stokes equations are discretized on a moving body‐fitted unstructured triangular grid using the finite volume method, taking into account grid non‐orthogonality, and implementing the SIMPLE algorithm for pressure solution, power law implicit differencing and Rhie–Chow explicit mass flux interpolations. The membrane is discretized as a set of links that coincide with a subset of the fluid mesh edges. A new model is introduced to distribute local and global elastic effects to aid stability of the structure model and damping effects are also included. A pseudo‐structural approach using a balance of mesh edge spring tensions and cell internal pressures controls the motion of fluid mesh nodes based on the displacements of the membrane. Following initial validation, the model is applied to the case of a two‐dimensional membrane pinned at both ends at an angle of attack of 4° to the oncoming flow, at a Reynolds number based on the chord length of 4 × 103. A series of tests on membranes of different elastic stiffness investigates their unsteady movements over time. The membranes of higher elastic stiffness adopt a stable equilibrium shape, while the membrane of lowest elastic stiffness demonstrates unstable interactions between its inflated shape and the resulting unsteady wake. These unstable effects are shown to be significantly magnified by the flexible nature of the membrane compared with a rigid surface of the same average shape. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
We present a compact finite differences method for the calculation of two‐dimensional viscous flows in biological fluid dynamics applications. This is achieved by using body‐forces that allow for the imposition of boundary conditions in an immersed moving boundary that does not coincide with the computational grid. The unsteady, incompressible Navier–Stokes equations are solved in a Cartesian staggered grid with fourth‐order Runge–Kutta temporal discretization and fourth‐order compact schemes for spatial discretization, used to achieve highly accurate calculations. Special attention is given to the interpolation schemes on the boundary of the immersed body. The accuracy of the immersed boundary solver is verified through grid convergence studies. Validation of the method is done by comparison with reference experimental results. In order to demonstrate the application of the method, 2D small insect hovering flight is calculated and compared with available experimental and computational results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A numerical method is developed for solving the 3D, unsteady, incompressible Navier–Stokes equations in curvilinear coordinates containing immersed boundaries (IBs) of arbitrary geometrical complexity moving and deforming under forces acting on the body. Since simulations of flow in complex geometries with deformable surfaces require special treatment, the present approach combines a hybrid immersed boundary method (HIBM) for handling complex moving boundaries and a material point method (MPM) for resolving structural stresses and movement. This combined HIBM & MPM approach is presented as an effective approach for solving fluid–structure interaction (FSI) problems. In the HIBM, a curvilinear grid is defined and the variable values at grid points adjacent to a boundary are forced or interpolated to satisfy the boundary conditions. The MPM is used for solving the equations of solid structure and communicates with the fluid through appropriate interface‐boundary conditions. The governing flow equations are discretized on a non‐staggered grid layout using second‐order accurate finite‐difference formulas. The discrete equations are integrated in time via a second‐order accurate dual time stepping, artificial compressibility scheme. Unstructured, triangular meshes are employed to discretize the complex surface of the IBs. The nodes of the surface mesh constitute a set of Lagrangian control points used for tracking the motion of the flexible body. The equations of the solid body are integrated in time via the MPM. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at stationary curvilinear grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. The influence of the fluid on the body is defined through pressure and shear stresses acting on the surface of the body. The HIBM & MPM approach is validated for FSI problems by solving for a falling rigid and flexible sphere in a fluid‐filled channel. The behavior of a capsule in a shear flow was also examined. Agreement with the published results is excellent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
An improved hybrid Cartesian/immersed boundary method is proposed based on ghost point treatment. A second‐order Taylor series expansion is used to evaluate the values at the ghost points, and an inverse distance weighting method to interpolate the values due to its properties of preserving local extrema and smooth reconstruction. The present method effectively eliminates numerical instabilities caused by matrix inversion and flexibly adopts the interpolation in the vicinity of the boundary. Some typical fluid–solid flows, including viscous flow past a circular cylinder, a sphere, two cylinders in a side‐by‐side arrangement, and an array of 18 staggered cylinders, are examined. These benchmark simulations reasonably indicate the reliability and capability of the present method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A hybrid Cartesian/immersed boundary code is developed and applied to interactions between a flexible plate and a surrounding fluid. The velocities at the immersed boundary (IB) nodes are reconstructed by interpolations along local normal lines to an interface. A new criterion is suggested to distribute the IB nodes near an interface. The suggested criterion guarantees a closed fluid domain by a set of the IB nodes and it is applicable to a zero‐thickness body. To eliminate the pressure interpolation at the IB nodes, the hybrid staggered/non‐staggered grid method is adapted. The developed code is validated by comparisons with other experimental and computational results of flow around an in‐line oscillating cylinder. Good agreements are achieved for velocity profiles and vorticity and pressure contours. As applications to the fluid–structure interaction, oscillations of flexible plate in a resting fluid and flow over a flexible plate are simulated. The elastic deformations of the flexible plate are modelled based on the equations of motion for plates considering the fluid pressure as the external load on the plate. Two non‐dimensional parameters are identified and their effects on the damping of the plate motion are examined. Grid convergence tests are carried out for both cases. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In the lattice Boltzmann method (LBM), the mechanism of fluid–solid interaction can be effectively captured by appropriately enforcing the no‐slip conditions in shear direction, and bounce‐back of the non‐equilibrium distribution portion in the normal direction at fluid–solid interfaces. Among various solid–fluid interaction schemes being proposed for LBM in recent decades, two simple fluid–solid interaction methods—the momentum exchange algorithm (MEA) and the immersed boundary scheme (IBS)—were developed based on the above concept. In this paper, MEA and IBS are implemented in a D2Q9 LBGK system and applied to measure the wall correction factors of drag force upon a stationary circular particle midway in the Poiseuille channel flow at very low Reynolds number and drag coefficients at low to moderate Reynolds numbers. MEA and IBS are also employed to compare the fluid‐induced torque over the cylinder in the Taylor–Couette flow, and the steady velocity of a particle settling under the influence of gravity inside a tube. The above experiments show that IBS seems to be more accurate and less demanding on lattice resolution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A robust, accurate, and computationally efficient interface tracking algorithm is a key component of an embedded computational framework for the solution of fluid–structure interaction problems with complex and deformable geometries. To a large extent, the design of such an algorithm has focused on the case of a closed embedded interface and a Cartesian computational fluid dynamics grid. Here, two robust and efficient interface tracking computational algorithms capable of operating on structured as well as unstructured three‐dimensional computational fluid dynamics grids are presented. The first one is based on a projection approach, whereas the second one is based on a collision approach. The first algorithm is faster. However, it is restricted to closed interfaces and resolved enclosed volumes. The second algorithm is therefore slower. However, it can handle open shell surfaces and underresolved enclosed volumes. Both computational algorithms exploit the bounding box hierarchy technique and its parallel distributed implementation to efficiently store and retrieve the elements of the discretized embedded interface. They are illustrated, and their respective performances are assessed and contrasted, with the solution of three‐dimensional, nonlinear, dynamic fluid–structure interaction problems pertaining to aeroelastic and underwater implosion applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Viscous flow in elastic (collapsible) tubes is a large-displacement fluid-structure interaction problem frequently encountered in biomechanics. This paper presents a robust and rapidly converging procedure for the solution of the steady three-dimensional Stokes equations, coupled to the geometrically non-linear shell equations which describe the large deformations of the tube wall. The fluid and solid equations are coupled in a segregated method whose slow convergence is accelerated by an extrapolation procedure based on the scheme's asymptotic convergence behaviour. A displacement control technique is developed to handle the system's snap-through behaviour. Finally, results for the tube's post-buckling deformation and for the flow in the strongly collapsed tube are shown. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
A high‐order difference method based multiphase model is proposed to simulate nonlinear interactions between water wave and submerged coastal structures. The model is based on the Navier–Stokes equations using a constrained interpolation profile (CIP) method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of wave–structure interactions. A more accurate interface capturing scheme, the volume of fluid/weighed line interface calculation (VOF/WLIC) scheme, is adopted as the interface capturing method. A series of computations are performed to verify the application of the model for simulations of fluid interaction with various structures. These problems include flow over a fixed cylinder, water entry of a circular cylinder and solitary waves passing various submerged coastal structures. Computations are compared with the available analytical, experimental and other numerical results and good agreement is obtained. The results of this study demonstrate the accuracy and applications of the proposed model to simulate the nonlinear flow phenomena and capture the complex free surface flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A numerical method is developed for modelling the interactions between incompressible viscous fluid and moving boundaries. The principle of this method is introducing the immersed‐boundary concept in the framework of the lattice Boltzmann method, and improving the accuracy and efficiency of the simulation by refining the mesh near moving boundaries. Besides elastic boundary with a constitutive law, the method can also efficiently simulate solid moving‐boundary interacting with fluid by employing the direct forcing technique. The method is validated by the simulations of flow past a circular cylinder, two cylinders moving with respect to each other and flow around a hovering wing. The versatility of the method is demonstrated by the numerical studies including elastic filament flapping in the wake of a cylinder and fish‐like bodies swimming in quiescent fluid. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, an approach for performing mesh adaptation in the numerical simulation of two‐dimensional unsteady flow with moving immersed boundaries is presented. In each adaptation period, the mesh is refined in the regions where the solution evolves or the moving bodies pass and is unrefined in the regions where the phenomena or the bodies deviate. The flow field and the fluid–solid interface are recomputed on the adapted mesh. The adaptation indicator is defined according to the magnitude of the vorticity in the flow field. There is no lag between the adapted mesh and the computed solution, and the adaptation frequency can be controlled to reduce the errors due to the solution transferring between the old mesh and the new one. The preservation of conservation property is mandatory in long‐time scale simulations, so a P1‐conservative interpolation is used in the solution transferring. A nonboundary‐conforming method is employed to solve the flow equations. Therefore, the moving‐boundary flows can be simulated on a fixed mesh, and there is no need to update the mesh at each time step to follow the motion or the deformation of the solid boundary. To validate the present mesh adaptation method, we have simulated several unsteady flows over a circular cylinder stationary or with forced oscillation, a single self‐propelled swimming fish, and two fish swimming in the same or different directions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Embedded boundary methods for CFD (computational fluid dynamics) simplify a number of issues. These range from meshing the fluid domain, to designing and implementing Eulerian‐based algorithms for fluid–structure applications featuring large structural motions and/or deformations. Unfortunately, embedded boundary methods also complicate other issues such as the treatment of the wall boundary conditions in general, and fluid–structure transmission conditions in particular. This paper focuses on this aspect of the problem in the context of compressible flows, the finite volume method for the fluid, and the finite element method for the structure. First, it presents a numerical method for treating simultaneously the fluid pressure and velocity conditions on static and dynamic embedded interfaces. This method is based on the exact solution of local, one‐dimensional, fluid–structure Riemann problems. Next, it describes two consistent and conservative approaches for computing the flow‐induced loads on rigid and flexible embedded structures. The first approach reconstructs the interfaces within the CFD solver. The second one represents them as zero level sets, and works instead with surrogate fluid/structure interfaces. For example, the surrogate interfaces obtained simply by joining contiguous segments of the boundary surfaces of the fluid control volumes that are the closest to the zero level sets are explored in this work. All numerical algorithms presented in this paper are applicable with any embedding CFD mesh, whether it is structured or unstructured. Their performance is illustrated by their application to the solution of three‐dimensional fluid–structure interaction problems associated with the fields of aeronautics and underwater implosion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
基于反馈力浸入边界法模拟复杂动边界流动   总被引:2,自引:1,他引:1  
浸入边界法是模拟流固耦合的重要数值方法之一。本文采用反馈力浸入边界方法,对旋转圆柱和水轮机活动导叶旋转摆动绕流后的动边界流场进行数值模拟。其中,固体边界采用一系列离散的点近似代替,流体为不可压缩牛顿流体,使用笛卡尔自适应加密网格,利用有限差分法进行求解。固体对流场的作用通过构造适宜的反馈力函数实现。本文首先通过旋转圆柱绕流的计算结果同实验结果进行对比,吻合较好,验证了该计算方法的可靠性。然后针对水电站水力过渡过程中水轮机活动导叶旋转摆动绕流后的动边界流场进行数值模拟,得到导叶动态绕流后的流场分布特性和涡结构的演化特性。  相似文献   

16.
This paper presents a numerical method for predicting the motion of a spherical bubble close to a rigid structure. The velocity potential in the fluid due to the motin of the bubble is represented by a source and a dipole located at the centroid of the bubble. This leads to a coupled system of differential equations for the bubbble radius and the location of its centroid. This system of equations can be solved using an appropriate numerical scheme.  相似文献   

17.
In this work, the immersed element‐free Galerkin method (IEFGM) is proposed for the solution of fluid–structure interaction (FSI) problems. In this technique, the FSI is represented as a volumetric force in the momentum equations. In IEFGM, a Lagrangian solid domain moves on top of an Eulerian fluid domain that spans over the entire computational region. The fluid domain is modeled using the finite element method and the solid domain is modeled using the element‐free Galerkin method. The continuity between the solid and fluid domains is satisfied by means of a local approximation, in the vicinity of the solid domain, of the velocity field and the FSI force. Such an approximation is achieved using the moving least‐squares technique. The method was applied to simulate the motion of a deformable disk moving in a viscous fluid due to the action of the gravitational force and the thermal convection of the fluid. An analysis of the main factors affecting the shape and trajectory of the solid body is presented. The method shows a distinct advantage for simulating FSI problems with highly deformable solids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we present a new method for simulating the motion of a disperse particle phase in a carrier gas through porous media. We assume a sufficiently dilute particle‐laden flow and compute, independently of the disperse phase, the steady laminar fluid velocity using the immersed boundary method. Given the velocity of the carrier gas, the equations of motion for the particles experiencing the Stokes drag force are solved to determine their trajectories. The ‘no‐slip consistent’ particle tracking algorithm avoids possible numerical filtration of very small particles due to the nonzero velocity field at the solid–fluid interface introduced by the immersed boundary method. This physically consistent tracking allows a reliable estimation of the filtration efficiency of porous filters due to inertial impaction. We illustrate and test our new approach for model porous media consisting of a structured array of aligned rectangular fibers, arranged in line and staggered. In the staggered geometry, the effect of the residual velocity at the solid–fluid interface is significant for particles with low inertia. Without adopting the developed no‐slip consistent numerical method, an artificial numerical filtration is observed, which becomes dominant for small enough particles. For both the in line and the staggered geometries, the filtration rate depends quite strongly and non monotonically on the particle inertia. This is expressed most clearly in the staggered arrangement in which a very strong increase in the filtration efficiency is observed at a well‐defined critical droplet size, corresponding to a qualitative change in the dominant particle paths in the porous medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A new stream function–vorticity formulation‐based immersed boundary method is presented in this paper. Different from the conventional immersed boundary method, the main feature of the present model is to accurately satisfy both governing equations and boundary conditions through velocity correction and vorticity correction procedures. The velocity correction process is performed implicitly based on the requirement that velocity at the immersed boundary interpolated from the corrected velocity field accurately satisfies the nonslip boundary condition. The vorticity correction is made through the stream function formulation rather than the vorticity transport equation. It is evaluated from the firstorder derivatives of velocity correction. Two simple and efficient ways are presented for approximation of velocity‐correction derivatives. One is based on finite difference approximation, while the other is based on derivative expressions of Dirac delta function and velocity correction. It was found that both ways can work very well. The main advantage of the proposed method lies in its simple concept, easy implementation, and robustness in stability. Numerical experiments for both stationary and moving boundary problems were conducted to validate the capability and efficiency of the present method. Good agreements with available data in the literature were achieved. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we present an immersed boundary method for solving fluid flow problems in the presence of static and moving rigid objects. A FEM is used starting from a base mesh that does not represent exactly rigid objects (non?body?conforming mesh). At each time step, the base mesh is locally modified to provide a new mesh fitting the boundary of the rigid objects. The mesh is also locally improved using edge swapping to enhance the quality of the elements. The Navier–Stokes equations are then solved on this new mesh. The velocity of moving objects is imposed through standard Dirichlet boundary conditions. We consider a number of test problems and compare the numerical solutions with those obtained on classical body?fitted meshes whenever possible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号