首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and sensitive chemiluminescence method was developed for the determination of fenfluramine. The chemiluminescence signal arising from the reaction between alkaline luminol and N‐bromosuccinimide was found to be greatly enhanced by fenfluramine in the presence of gold nanoparticles. But fenfluramine alone slightly inhibited the CL signal of N‐bromosuccinimide‐luminol in the absence of gold nanoparticles. The experimental parameters that affected the chemiluminescence signal were thoroughly investigated. Under the optimum experimental conditions, the enhanced chemiluminescence intensity was proportional to the concentration of fenfluramine in the range of 0.005‐1.0 mg/L. The detection limit was 0.9 μg/L fenfluramine with a relative standard deviation of 2.5% for 0.1 mg/L fenfluramine solution (n = 11). The method was applied to the determination of fenfluramine in some weight‐reducing tonics and in spiked human urine. A possible CL reaction mechanism was proposed.  相似文献   

2.
In this work, an LED‐induced‐chemiluminescence (LED‐CL) system was developed to extend the application of CL detection in CE. In the LED‐CL, the analyte photooxidizes luminol under the irradiation of LEDs and generates CL. Taking the advantage of the small size nature of LEDs, the constructed photoreactor is greatly miniaturized, and especially suitable as a CE detector. The feasibility of the proposed detector was evaluated by detection of riboflavin (RF), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) after CE separation. Under the optimized conditions, the LODs for RF, FMN and FAD were 0.007, 0.02 and 0.1 μg/mL, respectively, better than those by UV detection. The RSDs were 3.4, 3.6 and 4.1% for 0.5 μg/mL RF, 2 μg/mL FMN and 5 μg/mL FAD, respectively. The LED‐CL detector features low cost, miniaturization, fast response, high sensitivity and good reproducibility.  相似文献   

3.
The first application of charged polymer‐protected gold nanoparticles (Au NPs) as semi‐permanent capillary coating in CE‐MS was presented. Poly(diallyldimethylammonium chloride) (PDDA) was the only reducing and stabilizing agent for Au NPs preparation. Stable and repeatable coating with good tolerance to 0.1 M HCl, methanol, and ACN was obtained via a simple rinsing procedure. Au NPs enhanced the coating stability toward flushing by methanol, improved the run‐to‐run and capillary‐to‐capillary repeatabilities, and improved the separation efficiency of heroin and its basic impurities for tracing geographical origins of illicit samples. Baseline resolution of eight heroin‐related alkaloids was achieved on the PDDA‐protected Au NPs‐coated capillary under the optimum conditions: 120 mM ammonium acetate (pH 5.2) with addition of 13% methanol, separation temperature 20°C, applied voltage ?20 kV, and capillary effective length 60.0 cm. CE‐MS analysis with run‐to‐run RSDs (n=5) of migration time in the range of 0.43–0.62% and RSDs (n=5) of peak area in the range of 1.49–4.68% was obtained. The established CE‐MS method would offer sensitive detection and confident identification of heroin and related compounds and provide an alternative to LC‐MS and GC‐MS for illicit drug control.  相似文献   

4.
A novel aptamer‐based CE with chemiluminescence (CL) assay was developed for highly sensitive detection of human immunoglobulin E (IgE). The IgE aptamer was conjugated with gold nanoparticles (AuNPs) to form AuNPs‐aptamer that could specifically recognize the IgE to produce an AuNPs‐aptamer‐IgE complex. The mixture of the AuNPs‐aptamer‐IgE complex and the unbounded AuNPs‐aptamer could be effectively separated by CE and sensitively detected with luminol‐H2O2 CL system. By taking the advantage of the excellent catalytic behavior of AuNPs on luminol‐H2O2 CL system, the ultrasensitive detection of IgE was achieved. The detection limit of IgE is 7.6 fM (S/N = 3) with a linear range from 0.025 to 250 pM. Successful detection of IgE in human serum samples was demonstrated and the recoveries of 94.9–103.2% were obtained. The excellent assay features of the developed approach are its specificity, sensitivity, adaptability, and very small sample consumption. Our design provides a methodology model for determination of rare proteins in biological samples.  相似文献   

5.
基于酸性条件下甲醛对尿酸-KMnO4发光反应的增敏作用,建立了在线稀释顺序注射化学发光联用技术测定人体液中尿酸的新方法。在选定的实验条件下的7个浓度梯度范围内,尿酸浓度在5.0×10-6mol/L~1.0×10-3mol/L范围内与发光强度呈良好线性关系,相关系数0.9942~0.9998,RSD在2.0%~3.5%之间,回收率为98.0%~103.0%。每小时可分析80个样品,在线稀释测定结果与手工稀释法一致。  相似文献   

6.
《Electrophoresis》2017,38(13-14):1780-1787
An enzyme and antibody dual labeled gold nanoparticles enhancing chemiluminescence strategy was developed for highly sensitive CE immunoassay (IA) of prostate‐specific antigen (PSA). In this work, gold nanoparticles were labeled with horseradish peroxidase and antiprostate specific antigen‐antibody, and used as the marker (Ab*). After PSA (antigen, Ag) was added into the system, a noncompetitive immune reaction was happen between Ab* and Ag to form an immune complex (Ag–Ab*). Subsequently, the obtained Ag–Ab* and unreacted Ab* were separated by CE, and the chemiluminescence intensity of Ag‐Ab* was used to estimate PSA concentration. The calibration curve showed a good linearity in the range of 0.25–10 ng/mL. Based on a S/N of 3, the detection limit for PAS was estimated to be 0.092 ng/mL. Proposed CE method was applied for PSA quantification in human serum samples from healthy volunteers and patients with prostate cancer. The obtained results demonstrated that the proposed CE method may serve as an alternative tool for clinical analysis of PSA.  相似文献   

7.
A new detection system based on microdialysis sampling and chemiluminescence (CL) reaction was developed for in vivo monitoring of uric acid (UA) with high sensitivity, selectivity and accuracy. The uric acid is indirectly monitored by CL detection of enzymatic reaction product formation (H2O2), catalyzed by Uricase. A microprobe was modified and coated with immobilized enzyme through a Streptavidin-biotin mediated linker by using a chitosan support membrane, polyurethane trapped ferrocene film is employed to protect the probe surface and diminish the interference from reductant molecules, which often are present in the blood (e.g. ascorbic acid). The earlier mentioned probe and the constructed sensor can detect uric acid in the range of 0.01-1 mM with detection limit (3σ) of 5 μM. Finally, the system is used to monitor uric acid (UA) variation through an acute myocardial infarction (AMI) model. Following AMI-induced oxidative stress, the UA level decreases continuously, thus suggesting that UA plays a protective role as a substitute antioxidant. Furthermore, the in vivo monitoring results show good agreement with those obtained by a standard method, and the procedure is recommended for in vivo and real time monitoring of UA. In addition, the proposed method can be more accurate since the UA may be potentially oxidized by in vitro exposure to oxygen in the presence of a catalyst.  相似文献   

8.
4‐Aminobutylic acid (GABA) is a monomer of plastic polyamide 4. Bio‐based polyamide 4 can be produced by using GABA obtained from biomass. The production of L ‐glutamic acid (Glu) from biomass has been established. GABA is produced by decarboxylation of Glu in biological process. High‐performance liquid chromatography (HPLC) with derivatization is generally used to determine the concentration of GABA and Glu in reacted solution samples for the efficient production of GABA. In this study, we have investigated the rapid determination of GABA and Glu by capillary electrophoresis‐mass spectrometry (CE‐MS) without derivatization. The determination was achieved with the use of a shortened capillary, a new internal standard for GABA, and optimization of sheath liquid composition. Determined concentrations of GABA and Glu by CE‐MS were compared with those by pre‐column derivatization HPLC with phenylisothiocyanate. The determined values by CE‐MS were close to those by HPLC with pre‐column derivatization. These results suggest that the determination of GABA and Glu in reacted solution is rapid and simplified by the use of CE‐MS.  相似文献   

9.
A novel electrode was developed through electrodepositing gold nanoparticles (GNPs) on overoxidized-polyimidazole (PImox) film modified glassy carbon electrode (GCE). The combination of GNPs and the PImox film endowed the GNPs/PImox/GCE with good biological compatibility, high selectivity and sensitivity and excellent electrochemical catalytic activities towards ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). In the fourfold co-existence system, the peak separations between AA–DA, DA–UA and UA–Trp were large up to 186, 165 and 285 mV, respectively. The calibration curves for AA, DA and UA were obtained in the range of 210.0–1010.0 μM, 5.0–268.0 μM and 6.0–486.0 μM with detection limits (S/N = 3) of 2.0 μM, 0.08 μM and 0.5 μM, respectively. Two linear calibrations for Trp were obtained over ranges of 3.0–34.0 μM and 84.0–464.0 μM with detection limit (S/N = 3) of 0.7 μM. In addition, the modified electrode was applied to detect AA, DA, UA and Trp in samples using standard addition method with satisfactory results.  相似文献   

10.
碱性条件下,肉桂酸对Luminol-H2O2-纳米银化学发光体系有较强的增敏作用,据此,结合流动注射技术,建立了测定肉桂酸的新方法。该法线性范围为2.5×10-8~2.5×10-6mol/L,检出限为6.0×10-9mol/L,对1.0×10-7 mol/L的肉桂酸平行测定9次,相对标准偏差为2.5%。该法可用于尿液中肉桂酸的测定。  相似文献   

11.
Gold nanotubule membranes were prepared by using electroless deposition of gold within the pores and surfaces of polycarbonate track-etched membranes.And the gold nanotubule membrane was used as an electrode for determination of uric acid in urine samples for the first time.In Britton-Robinson buffer of pH 4.56,uric acid exhibited well-defined differential pulse voltammograms.And the interference between coexistent ascorbic acid and uric acid was overcome owing to the attractive ability of the gold nanotubule electrode to yield a large anodic peak difference ca.0.404 V(vs.SCE).The proposed method was then applied to the determination of uric acid in urine without any pretreatment.  相似文献   

12.
In this study, a nanocomposite of 3, 4, 9, 10‐perylenetetracarboxylic acid and L‐cysteine (PTCA‐Cys) with satisfactory water‐solubility and film‐forming ability was prepared and worked as substrate for modifying the glassy carbon electrode. Then, gold nanoparticles (AuNPs) were immobilized to achieve a PTCA‐Cys‐AuNPs modified electrode which provided more reaction positions on the sensor. Scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and different pulse voltammetry were employed to characterize the assembly process of the sensor. The constructed sensor displayed desirable sensitivity, selectivity and stability towards the simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Under the optimal experimental conditions, the oxidation peaks of AA, DA and UA appeared at 64, 240 and 376 mV, respectively. The corresponding linear response ranges were 3.2–435, 0.04–100 and 0.80–297 μM, and the detection limits were 1.1, 0.010 and 0.27 μM (S/N=3), respectively.  相似文献   

13.
尿酸含量高可使人产生痛风等疾病,尿酸的测定是临床检测重要的生化指标之一。金纳米粒子比色法检测尿酸实验联系实际生活,将科研前沿和教学内容有机结合起来,可以激发学生的学习兴趣,加深学生对经典理论的理解,增加学生对科研前沿的了解。本实验利用金纳米粒子吸光系数高的特点,通过尿酸与三聚氰胺反应后,抑制三聚氰胺诱导的金纳米粒子聚集,从而达到检测尿酸的目的。随着溶液中尿酸浓度的增加,溶液颜色由蓝变红,差别明显,视觉效果好,容易分辨。  相似文献   

14.
Glassy carbon electrodes (GCE) were sequentially modified by cysteamine-capped gold nanoparticles (AuNp@cysteamine) and PAMAM dendrimers generation 4.5 bearing 128-COOH peripheral groups (GCE/AuNp@cysteamine/PAMAM), in order to explore their capabilities as electrochemical detectors of uric acid (UA) in human serum samples at pH 2. The results showed that concentrations of UA detected by cyclic voltammetry with GCE/AuNp@cysteamine/PAMAM were comparable (deviation <±10%; limits of detection (LOD) and quantification (LOQ) were 1.7 × 10−4 and 5.8 × 10−4 mg dL−1, respectively) to those concentrations obtained using the uricase-based enzymatic-colorimetric method. It was also observed that the presence of dendrimers in the GCE/AuNp@cysteamine/PAMAM system minimizes ascorbic acid (AA) interference during UA oxidation, thus improving the electrocatalytic activity of the gold nanoparticles.  相似文献   

15.
建立了一种以纸芯片为平台,利用纳米金(Au NPs)的过氧化物模拟酶特性对血清中尿酸(UA)含量进行快速检测的方法.在改装的中性笔中灌注疏水性材料溶液,直接在滤纸上绘制所需要的图案,经干燥后形成纸芯片.将纳米金、四甲基联苯胺(TMB)和H_2O_2的混合液依次滴加于纸芯片检测区域,无色的TMB被氧化成蓝色,然后将待测样品滴加于蓝色区域,氧化态TMB被还原为无色,根据手机相机记录的检测区域灰度值计算试样中尿酸的浓度.实验优化了纳米金在纸芯片上的用量、反应时间和反应温度等参数,在最优实验条件下,检测尿酸的线性范围为10.6~125 mg/L,检出限为4.64 mg/L,加样回收率为94.8%~108.5%.该方法选择性良好,可用于测定血清样品中尿酸的含量.  相似文献   

16.
Po Wang  Xue Huang 《Talanta》2007,73(3):431-437
A novel electrochemical sensor has been constructed by use of a glassy carbon electrode (GCE) coated with a gold nanoparticle/choline (GNP/Ch). Electrochemical impedance spectroscopy (EIS), field emission scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the properties of this modified electrode. It was demonstrated that choline was covalently bounded on the surface of glassy carbon electrode, and deposited gold nanoparticles with average size of about 100 nm uniformly distributed on the surface of Ch. Moreover, the modified electrode exhibits strong electrochemical catalytic activity toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with obviously reduction of overpotentials. For the ternary mixture containing DA, AA and UA, these three compounds can be well separated from each other, allowing simultaneously determination of DA and UA under coexistence of AA. The proposed method can be applied to detect DA and UA in real samples with satisfactory results.  相似文献   

17.
The simultaneous determination of cationic, anionic, and neutral analytes in a real sample was demonstrated by coupling electrochemical (EC) derivatization with counter‐EOF CE‐C4D. An EC flow cell was used to oxidize alcohols from an antiseptic mouthwash sample into carboxylic acids at a platinum electrode in acid medium. The carboxylates formed in the derivatization process and other sample ingredients, such as benzoate, saccharinate, and sodium ions, were separated in counter‐flow mode and detected in one run in Tris‐HCl buffer, pH 8.6. Fewer than 5 min were needed to complete each analysis with the automated flow system comprising solenoid pumps for the management of solutions. Insights into the electrochemistry of benzoic acid, present in the sample matrix, were also gained by EC‐CE‐C4D; more specifically, by applying potentials higher than 1.47 V to the platinum electrode, some formiate and minute amounts of salicylate were detected.  相似文献   

18.
采用三步法制备了金纳米粒子-石墨烯层层组装的复合材料,并将其修饰在玻碳电极上,制备成一种新型的同时检测抗坏血酸(AA)、多巴胺(DA)和尿酸(UA)的电化学传感器。采用扫描电子显微镜(SEM)对复合材料进行了表征,并研究了传感器对AA、DA、UA电催化性能。结果表明:该传感器对AA、DA和UA的氧化具有很好的催化和分离效果,可实现AA、DA和UA的同时测定。在三者共存体系中,AA-DA、DA-UA、AA-UA的氧化峰电位差分别为152mV、161mV和313mV。线性范围分别为1.996×10-5~5.580×10-3、1.996×10-6~5.478×10-3和1.000×10-6~1.000×10-3 mol/L,检出限分别为1.200×10-5、1.030×10-7和4.100×10-7 mol/L。该修饰电极选择性好、稳定性高,有望用于实际样品中AA、DA和UA的同时检测。  相似文献   

19.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

20.
基于绿原酸对鲁米诺-H2O2-辣根过氧化物酶化学发光体系具有强烈的抑制作用,建立了绿原酸的化学发光分析法,并探讨了其作用机理。化学发光强度的变化值与绿原酸浓度的对数在5.2×10-9~1.0×10-6g/mL范围内呈线性关系,检出限(S/N=3)达7.8×10-10g/mL。该方法成功用于金银花中绿原酸含量的测定,回收率为96.0%~100.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号