首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We consider k‐factorizations of the complete graph that are 1‐rotational under an assigned group G, namely that admit G as an automorphism group acting sharply transitively on all but one vertex. After proving that the k‐factors of such a factorization are pairwise isomorphic, we focus our attention to the special case of k = 2, a case in which we prove that the involutions of G necessarily form a unique conjugacy class. We completely characterize, in particular, the 2‐factorizations that are 1‐rotational under a dihedral group. Finally, we get infinite new classes of previously unknown solutions to the Oberwolfach problem via some direct and recursive constructions. © 2007 Wiley Periodicals, Inc. J Combin Designs 16: 87–100, 2008  相似文献   

2.
We establish by means of a computer search that a complete graph on 14 vertices has 98,758,655,816,833,727,741,338,583,040 distinct and 1,132,835,421,602,062,347 nonisomorphic one‐factorizations. The enumeration is constructive for the 10,305,262,573 isomorphism classes that admit a nontrivial automorphism. © 2008 Wiley Periodicals, Inc. J Combin Designs 17: 147–159, 2009  相似文献   

3.
We consider one‐factorizations of K2n possessing an automorphism group acting regularly (sharply transitively) on vertices. We present some upper bounds on the number of one‐factors which are fixed by the group; further information is obtained when equality holds in these bounds. The case where the group is dihedral is studied in some detail, with some non‐existence statements in case the number of fixed one‐factors is as large as possible. Constructions both for dihedral groups and for some classes of abelian groups are given. © 2002 John Wiley & Sons, Inc. J Combin Designs 10: 1–16, 2002  相似文献   

4.
We establish natural bijections between three different classes of combinatorial objects; namely certain families of locally 2‐arc transitive graphs, partial linear spaces, and homogeneous factorizations of arc‐transitive graphs. Moreover, the bijections intertwine the actions of the relevant automorphism groups. Thus constructions in any of these areas provide examples for the others. © 2005 Wiley Periodicals, Inc. J Combin Designs 14: 139–148, 2006  相似文献   

5.
It is known that a necessary condition for the existence of a 1‐rotational 2‐factorization of the complete graph K2n+1 under the action of a group G of order 2n is that the involutions of G are pairwise conjugate. Is this condition also sufficient? The complete answer is still unknown. Adapting the composition technique shown in Buratti and Rinaldi, J Combin Des, 16 (2008), 87–100, we give a positive answer for new classes of groups; for example, the groups G whose involutions lie in the same conjugacy class and having a normal subgroup whose order is the greatest odd divisor of |G|. In particular, every group of order 4t+2 gives a positive answer. Finally, we show that such a composition technique provides 2‐factorizations with a rich group of automorphisms. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 237–247, 2010  相似文献   

6.
7.
8.
For which groups G of even order 2n does a 1‐factorization of the complete graph K2n exist with the property of admitting G as a sharply vertex‐transitive automorphism group? The complete answer is still unknown. Using the definition of a starter in G introduced in 4 , we give a positive answer for new classes of groups; for example, the nilpotent groups with either an abelian Sylow 2‐subgroup or a non‐abelian Sylow 2‐subgroup which possesses a cyclic subgroup of index 2. Further considerations are given in case the automorphism group G fixes a 1‐factor. © 2005 Wiley Periodicals, Inc. J Combin Designs  相似文献   

9.
We consider the class of I‐graphs I(n,j,k), which is a generalization over the class of the generalized Petersen graphs. We study different properties of I‐graphs, such as connectedness, girth, and whether they are bipartite or vertex‐transitive. We give an efficient test for isomorphism of I‐graphs and characterize the automorphism groups of I‐graphs. Regular bipartite graphs with girth at least 6 can be considered as Levi graphs of some symmetric combinatorial configurations. We consider configurations that arise from bipartite I‐graphs. Some of them can be realized in the plane as cyclic astral configurations, i.e., as geometric configurations with maximal isometric symmetry. © 2005 Wiley Periodicals, Inc.  相似文献   

10.
Only recently have techniques been introduced that apply design theory to construct graphs with the n‐e.c. adjacency property. We supply a new random construction for generating infinite families of finite regular n‐e.c. graphs derived from certain resolvable Steiner 2‐designs. We supply an extension of our construction to the infinite case, and thereby give a new representation of the infinite random graph. We describe a family of deterministic graphs in infinite affine planes which satisfy the 3‐e.c. property. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 294–306, 2009  相似文献   

11.
12.
13.
For a positive integer n, we introduce the new graph class of n‐ordered graphs, which generalize partial n‐trees. Several characterizations are given for the finite n‐ordered graphs, including one via a combinatorial game. We introduce new countably infinite graphs R(n), which we name the infinite random n‐ordered graphs. The graphs R(n) play a crucial role in the theory of n‐ordered graphs, and are inspired by recent research on the web graph and the infinite random graph. We characterize R(n) as a limit of a random process, and via an adjacency property and a certain folding operation. We prove that the induced subgraphs of R(n) are exactly the countable n‐ordered graphs. We show that all countable groups embed in the automorphism group of R(n). © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 204–218, 2009  相似文献   

14.
Generalizing the well‐known concept of an i‐perfect cycle system, Pasotti [Pasotti, in press, Australas J Combin] defined a Γ‐decomposition (Γ‐factorization) of a complete graph Kv to be i‐perfect if for every edge [x, y] of Kv there is exactly one block of the decomposition (factor of the factorization) in which x and y have distance i. In particular, a Γ‐decomposition (Γ‐factorization) of Kv that is i‐perfect for any i not exceeding the diameter of a connected graph Γ will be said a Steiner (Kirkman) Γ‐system of order v. In this article we first observe that as a consequence of the deep theory on decompositions of edge‐colored graphs developed by Lamken and Wilson [Lamken and Wilson, 2000, J Combin Theory Ser A 89, 149–200], there are infinitely many values of v for which there exists an i‐perfect Γ‐decomposition of Kv provided that Γ is an i‐equidistance graph, namely a graph such that the number of pairs of vertices at distance i is equal to the number of its edges. Then we give some concrete direct constructions for elementary abelian Steiner Γ‐systems with Γ the wheel on 8 vertices or a circulant graph, and for elementary abelian 2‐perfect cube‐factorizations. We also present some recursive constructions and some results on 2‐transitive Kirkman Γ‐systems. © 2008 Wiley Periodicals, Inc. J Combin Designs 17: 197–209, 2009  相似文献   

15.
16.
Let be a 2‐factorization of the complete graph Kv admitting an automorphism group G acting doubly transitively on the set of vertices. The vertex‐set V(Kv) can then be identified with the point‐set of AG(n, p) and each 2‐factor of is the union of p‐cycles which are obtained from a parallel class of lines of AG(n, p) in a suitable manner, the group G being a subgroup of A G L(n, p) in this case. The proof relies on the classification of 2‐(v, k, 1) designs admitting a doubly transitive automorphism group. The same conclusion holds even if G is only assumed to act doubly homogeneously. © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

17.
Let X be a vertex‐transitive graph, that is, the automorphism group Aut(X) of X is transitive on the vertex set of X. The graph X is said to be symmetric if Aut(X) is transitive on the arc set of X. suppose that Aut(X) has two orbits of the same length on the arc set of X. Then X is said to be half‐arc‐transitive or half‐edge‐transitive if Aut(X) has one or two orbits on the edge set of X, respectively. Stabilizers of symmetric and half‐arc‐transitive graphs have been investigated by many authors. For example, see Tutte [Canad J Math 11 (1959), 621–624] and Conder and Maru?i? [J Combin Theory Ser B 88 (2003), 67–76]. It is trivial to construct connected tetravalent symmetric graphs with arbitrarily large stabilizers, and by Maru?i? [Discrete Math 299 (2005), 180–193], connected tetravalent half‐arc‐transitive graphs can have arbitrarily large stabilizers. In this article, we show that connected tetravalent half‐edge‐transitive graphs can also have arbitrarily large stabilizers. A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in Aut(Cay(G, S)). There are only a few known examples of connected tetravalent non‐normal Cayley graphs on non‐abelian simple groups. In this article, we give a sufficient condition for non‐normal Cayley graphs and by using the condition, infinitely many connected tetravalent non‐normal Cayley graphs are constructed. As an application, all connected tetravalent non‐normal Cayley graphs on the alternating group A6 are determined. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

18.
In general, it is difficult to determine whether two starter induced 1‐factorizations of K2n are isomorphic. However, when one of the 1‐factorizations has a unique starter group to within conjugacy, we show that two starter induced 1‐factorizations on K2n are isomorphic, if and only if, the corresponding starters are isomorphic. Two starters are isomorphic if there is a group isomorphism between the respective starter groups which takes one starter to the other. It is relatively easy to check whether starters are isomorphic in many examples. The difficulty comes in showing there is a unique starter group to within conjugacy. A number of sufficient conditions for this are given; one such condition is the assumption that the 1‐factorization be irreducible, a condition which applies to all almost perfect 1‐factorizations. Also, generalized Mullin Nemeth starters are introduced and discussed in this context. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 124–143, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10023  相似文献   

19.
A graph is s‐regular if its automorphism group acts freely and transitively on the set of s‐arcs. An infinite family of cubic 1‐regular graphs was constructed in [10], as cyclic coverings of the three‐dimensional Hypercube. In this paper, we classify the s‐regular cyclic coverings of the complete bipartite graph K3,3 for each ≥ 1 whose fibre‐preserving automorphism subgroups act arc‐transitively. As a result, a new infinite family of cubic 1‐regular graphs is constructed. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 101–112, 2004  相似文献   

20.
While finite cop‐win finite graphs possess a good structural characterization, none is known for infinite cop‐win graphs. As evidence that such a characterization might not exist, we provide as large as possible classes of infinite graphs with finite cop number. More precisely, for each infinite cardinal κ and each positive integer k, we construct 2κ non‐isomorphic k‐cop‐win graphs satisfying additional properties such as vertex‐transitivity, or having universal endomorphism monoid and automorphism group. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 334–342, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号