共查询到20条相似文献,搜索用时 15 毫秒
1.
A new sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was prepared as sorbent for solid‐phase extraction. The extraction efficiency of the prepared sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was assessed by using three selected organophosphorus pesticides, namely, chlorpyrifos, profenofos, and malathion. Gas chromatography–mass spectrometry was used for detection of organophosphorus pesticides. Several vital parameters were optimized to identify the best extraction conditions. Under the optimum extraction conditions, solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method showed good linearity range (0.05‐1 μg/mL) with coefficient of determination more than 0.995. The limits of detection obtained were in the range of 0.01–0.07 μg/mL and limits of quantification ranging from 0.03 to 0.21 μg/mL. The limits of detection obtained for the developed method were 2.3–6.5× lower than the limits of detection of commercial octadecyl silica sorbent. Real samples analysis was carried out by applying the developed method on red apple and purple grape samples. The developed method exhibited good recoveries (88.33–120.7%) with low relative standard deviations ranging from 1.6 to 3.3% compared to commercial octadecyl silica sorbent, which showed acceptable recoveries (70.3–100.2%) and relative standard deviations (6.3–8.8%). The solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method is presented as an alternative extraction method for determination of organophosphorus pesticides. 相似文献
2.
Combination of dispersive solid‐phase extraction and salting‐out homogeneous liquid–liquid extraction for the determination of organophosphorus pesticides in cereal grains 下载免费PDF全文
Chunhong Jia Xiaodan Zhu Jihua Wang Ercheng Zhao Min He Li Chen Pingzhong Yu 《Journal of separation science》2014,37(14):1862-1866
A new analytical method for the determination of organophosphorus pesticides in cereal samples was developed by combining dispersive SPE (d‐SPE) and salting‐out homogeneous liquid–liquid extraction (SHLLE). The pesticides were first extracted from cereal grains with acetonitrile, followed by d‐SPE cleanup. A 2 mL aliquot of the extract was then added to a centrifuge tube containing 9.2 mL water and 3.3 g NaCl for SHLLE. Analysis of the extract was carried out by gas chromatography coupled with flame photometric detection. The d‐SPE procedure effectively provides the necessary cleanup of the extract while SHLLE is used as an efficient concentration technique. Experimental parameters influencing the extraction efficiency including amounts of added water and salt were investigated. Recovery studies were carried out at three fortification levels, yielding recoveries in the range of 57.7–98.1% with the RSD from 3.7 to 10.9%. The reported limits of determination obtained from this study were 1 μg/kg, which is better than the conventional methods. In the analysis of 40 wheat and corn samples taken from Beijing suburbs, only two wheat samples have chlorpyrifos residue over the limits of determination. 相似文献
3.
Chunhong Jia Xiaodan Zhu Li Chen Min He Pingzhong Yu Ercheng Zhao 《Journal of separation science》2010,33(2):244-250
In this study, a microextraction method termed as ultrasound‐assisted emulsification–microextraction (USAEME) has been developed for the extraction of organophosphorus pesticides (OPPs) in water and orange juice samples. In the USAEME method, aliquots of 50 μL chlorobenzene used as extraction solvent was added to 10 mL water sample in a conical glass centrifugal tube. Factors influencing the USAEME extraction efficiency such as sonication time, extraction solvent, extraction volume and salt addition were evaluated. Under the optimum conditions, enrichment factors ranged from 241 to 311, LOD varied from 5.3 to 10.0 ng/L and linearity with a coefficient of estimation (r2) varied from 0.9991 to 0.9998 in the concentration level range of 0.05–2.5 μg/L for the extraction of OPPs in water samples. Finally, the proposed USAEME method was used for the extraction of OPPs from water and orange juice. The recoveries were in the range of 80.0–110.0%, and the repeatability of the method expressed as RSD (n=3) varied between 1.6 and 13%. The USAEME method has the advantage of being easy to operate, low consumption of organic solvent and high extraction efficiency. 相似文献
4.
Sol–gel coating of poly(ethylene glycol)‐grafted multiwalled carbon nanotubes for stir bar sorptive extraction and its application to the analysis of polycyclic aromatic hydrocarbons in water 下载免费PDF全文
Nadiya Ekbatani Amlashi Mohammad Reza Hadjmohammadi 《Journal of separation science》2016,39(17):3445-3456
Poly(ethylene glycol) grafted onto carboxyl‐terminated multi‐walled carbon nanotubes were prepared by the sol–gel technique as a stationary phase for stir bars. The analytical methodology included stir bar sorptive extraction with micellar desorption followed by liquid chromatography. Polycyclic aromatic hydrocarbons were used as the model compounds to evaluate the extraction performance. The extraction efficiency, for the determination of polycyclic aromatic hydrocarbons from water samples, was optimized based on a chemometrics approach. The effect of the experimental parameters on the extraction response was investigated and the optimum extraction conditions were selected. Under the optimum conditions, the proposed method showed a good linearity within the different ranges for different analytes (e.g. 0.05–500 ng/mL for phenanthrene), a square of the correlation coefficient was higher than 0.999, and an appropriate limit of detection in the range of 0.013–0.072 ng/mL. The recoveries in all cases were above 94%, with relative standard deviations below 2.4%. 相似文献
5.
Mir Ali Farajzadeh Djavanshir Djozan Nina Nouri Mehdi Bamorowat Mohammad Safi Shalamzari 《Journal of separation science》2010,33(12):1816-1828
Stir bar sorptive extraction (SBSE) combined with dispersive liquid–liquid microextraction (DLLME) has been developed as a new approach for the extraction of six triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, triticonazole and difenconazole) in aqueous samples prior to GC‐flame ionization detection (GC‐FID). A series of parameters that affect the performance of both steps were thoroughly investigated. Under optimized conditions, aqueous sample was stirred using a stir bar coated with octadecylsilane (ODS) and then target compounds on the sorbent (stir bar) were desorbed with methanol. The extract was mixed with 25 μL of 1,1,2,2‐tetrachloroethane and the mixture was rapidly injected into sodium chloride solution 30% w/v. After centrifugation, an aliquot of the settled organic phase was analyzed by GC‐FID. The methodology showed broad linear ranges for the six triazole pesticides studied, with correlation coefficients higher than 0.993, lower LODs and LOQs between 0.53–24.0 and 1.08–80.0 ng/mL, respectively, and suitable precision (RSD < 5.2%). Moreover, the developed methodology was applied for the determination of target analytes in several samples, including tap, river and well waters, wastewater (before and after purification), and grape and apple juices. Also, the presented SBSE‐DLLME procedure followed by GC‐MS determination was performed on purified wastewater. Penconazole, hexaconazole and diniconazole were detected in the purified wastewater that confirmed the obtained results by GC‐FID determination. In short, by coupling SBSE with DLLME, advantages of two methods are combined to enhance the selectivity and sensitivity of the method. This method showed higher enrichment factors (282–1792) when compared with conventional methods of sample preparation to screen pesticides in aqueous samples. 相似文献
6.
Tong Wu Wenting Zhao Zhonghua Yang Zhiqiang Zhou 《Journal of separation science》2013,36(24):3918-3925
The aim of this work was to develop temperature‐controlled ultrasound‐ and vortex‐assisted liquid–liquid microextraction as a fast and efficient approach for the extraction of nine organophosphorus pesticides in beverage samples followed by GC with flame photometric detection analysis. The combination of ultrasonication and vortexing were used to assist the microextraction, and the use of a dispersion solvent was avoided. Several variables that could potentially affect the extraction efficiency, namely, the type and volume of extraction solvent, sequence, and time of ultrasonication and vortexing, ultrasonication bath temperature and ionic strength were optimized. Under optimum conditions, the calibration graphs were linear over the range of 0.5–200 μg/L. The LOD (S/N = 3) was between 0.01 and 0.05. The optimized method exhibited a good precision level with RSD values between 4.5 and 9.8%. The enrichment factors for the nine organophosphorus pesticides were between 224 and 339. Four beverage samples were successfully analyzed using the proposed method. 相似文献
7.
Vortex‐assisted liquid–liquid microextraction using a low‐toxicity solvent for the determination of five organophosphorus pesticides in water samples by high‐performance liquid chromatography 下载免费PDF全文
Guilong Peng Qiang He Daniel Mmereki Guangming Zhou Weiliang Pan Li Gu Leilei Fan Xiaohui Tang Junhua Chen Yufeng Mao 《Journal of separation science》2015,38(20):3487-3493
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples. 相似文献
8.
Ionic‐liquid‐mediated poly(dimethylsiloxane)‐ grafted carbon nanotube fiber prepared by the sol–gel technique for the head space solid‐phase microextraction of methyl tert‐butyl ether using GC 下载免费PDF全文
A headspace solid‐phase microextraction method was developed for the preconcentration and extraction of methyl tert‐butyl ether. An ionic‐liquid‐mediated multiwalled carbon nanotube–poly(dimethylsiloxane) hybrid coating, which was prepared by covalent functionalization of multiwalled carbon nanotubes with hydroxyl‐terminated poly(dimethylsiloxane) using the sol–gel technique, was used as solid‐phase microextraction adsorbent. This innovative fiber exhibited a highly porous surface structure, high thermal stability (at least 320°C) and long lifespan (over 210 uses). Potential factors affecting the extraction efficiency were optimized. Under the optimum conditions, the method LOD (S/N = 3) was 0.007 ng/mL and the LOQ (S/N = 10) was 0.03 ng/mL. The calibration curve was linear in the range of 0.03–200 ng/mL. The RSDs for one fiber (repeatability, n = 5) at three different concentrations (0.05, 1, and 150 ng/mL) were 5.1, 4.2, and 4.6% and for the fibers obtained from different batches (reproducibility, n = 3) were 6.5, 5.9, and 6.3%, respectively. The developed method was successfully applied to the determination of methyl tert‐butyl ether in different real water samples on three consecutive days. The relative recoveries for the spiked samples with 0.05, 1, and 150 ng/mL were between 94–104%. 相似文献
9.
Hsun‐Lien Lin Tsung‐Yi Chao Yeng‐Fong Shih Shenghong A. Dai Wen‐Chiung Su Ru‐Jong Jeng 《先进技术聚合物》2008,19(8):984-992
A series of thermally stable organic/inorganic second‐order nonlinear optical (NLO) composites via sequential self‐repetitive reaction (SSRR) and sol–gel process has been developed. This SSRR is based on carbodiimide (CDI) chemistry. The difunctional azo chromophores (2,4‐diamino‐4′‐(4‐ nitrophenyl‐diazenyl)azobenzene (DNDA)) was reacted with excessive amount of 4, 4′‐methylene‐ diphenylisocyanate (MDI) to form poly‐CDI, and subsequently trimellitic anhydride (TMA) was added to obtain poly(N‐acylurea). The organic/inorganic composites containing prepolymer of phenyltriethoxysilane (PTEOS) and poly(N‐acylurea) in different weight ratios (10:90, 30:70, 50:50, 70:30, 90:10 wt%) were prepared, respectively. The moderate glass transition temperature (Tg) characteristic of the poly(N‐acylurea) allows the NLO‐active polymer to achieve high poling efficiency. After in situ poling and curing process, the Tgs of the composites were elevated, and higher than that of the pristine poly(amide–imide) sample. Electro‐optical (EO) coefficients (r33) of about 5.5 ~ 18.0 pm/V at 830 nm were obtained. Excellent temporal stability at 100°C, and waveguide characteristics (3.1–4.2 dB/cm at 830 nm) were also obtained for these composites. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
10.
Automated methods of PDMS/β‐CD/divinylbenzene‐coated stir plate sorptive extraction (SPSE) coupled to HPLC‐fluorescence detector were reported for the first time. Three automation modes, static SPSE, circular flow SPSE and continuous flow SPSE, were evaluated and critically compared with stir bar sorptive extraction by using six polycyclic aromatic hydrocarbons as model analytes. It was found that the operable sample volume for circular flow SPSE and continuous flow SPSE was larger than that for static SPSE. Under the same extraction conditions, continuous flow SPSE exhibited the highest extraction efficiencies in all automated modes and manual stir bar sorptive extraction for the target compounds. Compared with the manual operation (approximately 5–10 min), automated SPSE required a relatively short time (117–180 s) to finish sampling, washing and sample loading. Besides being labor‐saving and time‐saving, automated SPSE has other advantages, such as no time limit and non‐attended operation. The proposed continuous flow PDMS/β‐CD/divinylbenzene‐coated SPSE‐HPLC‐fluorescence detector was successfully applied to environmental water analysis. 相似文献
11.
Yuxian An Lixia Li Lisong Dong Zhishen Mo Zhiliu Feng 《Journal of Polymer Science.Polymer Physics》1999,37(5):443-450
Nonisothermal crystallization and melting behavior of poly(β‐hydroxybutyrate) (PHB)–poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB–PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB–PVAc blends very well. The double‐melting phenomenon is found to be caused by crystallization during heating in DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 443–450, 1999 相似文献
12.
Elena Ostas Klaus Schröter Mario Beiner Tingzi Yan Thomas Thurn‐Albrecht Wolfgang H. Binder 《Journal of polymer science. Part A, Polymer chemistry》2011,49(15):3404-3416
The crystallization of block copolymers (BCPs) under homogeneous and heterogeneous nucleation is currently well understood revealing the strong interplay of crystallization in competition to microphase separation. This article reports investigations on synthesis and crystallization processes in weakly interacting supramolecular pseudo‐BCPs, composed of poly(ε‐caprolactone) (PCL) and poly(isobutylene) (PIB) blocks, connected by a specifically interacting hydrogen bond (thymine/2,6‐diaminotriazine). Starting from ring opening polymerization of ε‐caprolactone, the use of “click”‐chemistry enabled the introduction of thymine endgroups onto PCL polymer, thus generating the fully thymine‐substituted pure PCLs ( 1a , 1b ) as judged via NMR and MALDI analysis. Physical mixing of 1a , 1b with a bivalent, bis(2,6‐diaminotriazine)‐containing molecule ( 2 ) generated the bivalent polymers BC1 and BC2 , whereas mixing of 1a or 1b with the 2,6‐diaminotriazine‐substituted PIB ( 3 ) generated the supramolecular pseudo‐BCPs BC3 and BC4 . Thermal investigations (DSC, Avrami analysis) revealed only minor changes in the crystallization behavior of BC1 – BC4 with Avrami exponents close to three, indicative of a confluence of the growing crystals during the crystallization process. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
13.
An effective and simple method for polar phenols in water matrix was developed by using stir bar sorptive extraction (SBSE) based on a hydrophilic poly(vinylpyrrolididone‐divinylbenzene) (VPDB) monolithic material and HPLC analysis. To achieve optimum extraction performance for phenols, several parameters, including extraction and desorption time, desorption solvent, pH value, and ionic strength of sample matrix, were investigated. Under the optimized experimental conditions, eight phenols were directly enriched from water samples and analyzed by HPLC‐DAD. The detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method for the target compounds were achieved within the range of 0.72–1.37 and 2.40–4.27 ng/mL from spiked water, respectively. Recoveries of eight phenolic compounds were found in the range of 55.2–95.9%. The calibration curves showed the linearity ranging from 5 to 150 ng/mL with linear regression coefficient R2 values above 0.98. Method repeatability presented as intra‐ and interday precisions were also found with the RSDs less than 4.10 and 7.61%, respectively. The distribution coefficients between VPDB and water (KVPDB/W) for phenolic compounds were also calculated and compared with KO/W. Finally, the proposed method was successfully applied to the determination of the target compounds in tap water, sea water and wastewater samples. 相似文献
14.
Anne Kari Nyhus Steinar Hagen Arvid Berge 《Journal of polymer science. Part A, Polymer chemistry》2000,38(8):1366-1378
Residual vinyl groups in macroporous monosized polymer particles of poly(meta‐DVB) and poly(para‐DVB) prepared with toluene and 2‐EHA as porogens have been reacted with aluminum chloride as Friedel–Crafts catalyst with and without the presence of lauroyl chloride. In the reaction between aluminum chloride and pendant vinyl groups a post‐crosslinking by cationic polymerization takes place. A reaction occurring simultaneously is the addition of HCl to the double bonds. The progress of these reactions was studied by characterization of vinyl group conversion, pore size distribution, specific surface area, morphology, and swelling behavior. In the reaction with aluminum chloride the poly(para‐DVB) particles showed a substantially higher conversion of pendant vinyl groups than the particles made of poly(meta‐DVB) independent of porogen type. The reaction with aluminum chloride led to a reduced swelling in organic solvents and an increased rigidity of the particles prepared with toluene as porogen. This is confirmed by an increase in the total pore volume in the dry state and a change in the pore size distribution of these particles. Also in the reaction with lauroyl chloride poly(para‐DVB) particles have shown a higher conversion of pendant vinyl groups than poly(meta‐DVB) particles and the acylation was almost complete at the early stage of the reaction. The swelling in organic solvents is reduced as a result of the incorporation of acyl groups into the particles prepared with toluene as porogen. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1366–1378, 2000 相似文献
15.
Thuy Thu Truong Son Hong Thai Ha Tran Nguyen Vinh‐Dat Vuong Le‐Thu T. Nguyen 《Journal of polymer science. Part A, Polymer chemistry》2017,55(5):928-939
A simple and facile strategy for the functionalization of commercial poly(ε‐caprolactone) diols (PCLs) with pendant functionalities at the polymer chain termini is described. Well‐defined allyl‐functionalized PCLs with varying numbers of allyl end‐block side‐groups were synthesized by cationic ring‐opening polymerization of allyl glycidyl ether using PCL diols as macroinitiators. Further functionalization of the allyl‐functionalized PCLs was realized via the UV‐initiated radical addition of a furan‐functionalized thiol to the pendant allyl functional groups, showing the suitability for post‐modification of the PCL materials. Changes in polymer structure as a result of varying the number of pendant functional units at the PCL chain termini were demonstrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 928–939 相似文献
16.
Polyvinylimidazole/sol–gel composite as a novel solid‐phase microextraction coating for the determination of halogenated benzenes from aqueous solutions 下载免费PDF全文
Manoochehr Farjaminezhad Mohammad Saber Tehrani Parviz Aberoomand Azar Syed Waqif Hussain Shahab Bohlooli 《Journal of separation science》2014,37(12):1475-1481
A polyvinylimidazole/sol–gel composite is proposed as a novel solid‐phase microextraction fiber to extract five halobenzenes from the headspace of aqueous solutions in combination with gas chromatography with mass spectrometry. The prepared fiber was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The obtained results showed that porous polyvinylimidazole/sol–gel composite was chemically deposited on fused silica fiber. The effect of important extraction parameters including extraction temperature, extraction time, and salt content were investigated. The optimum conditions were as follows: extraction temperature 25°C, extraction time 20 min, and salt concentration 30 w/v%. Detection limits and relative standard deviations of the developed method for halogenated benzenes were below 0.1 pg/mL and 15%, respectively. Repeatability of the proposed method, explained by relative standard deviation, varied between 5.48 and 9.15% (n = 5). The limits of detection (S/N = 3) ranged between 0.01 and 0.10 ng/L using gas chromatography with mass spectrometry with selected ion monitoring mode. For real sample analysis, three types of water samples with different matrices (ground, surface, and tap water) were studied. The optimized procedure was applied to extraction and method validation of halogenated benzenes in spiked water samples. 相似文献
17.
Cuiqing Teng Kai Yang Ping Ji Muhuo Yu 《Journal of polymer science. Part A, Polymer chemistry》2004,42(20):5045-5053
An Erratum has been published for this article in J. Polym. Sci. Part A: Polym. Chem. (2004) 42(22) 5845 New multiblock copolymers derived from poly(L‐lactic acid) (PLLA) and poly(ε‐caprolactone) (PCL) were prepared with the coupling reaction between PLLA and PCL oligomers with ? NCO terminals. Fourier transform infrared (FTIR), 13C NMR, and differential scanning calorimetry (DSC) were used to characterize the copolymers and the results showed that PLLA and PCL were coupled by the reaction between ? NCO groups at the end of the PCL and ? OH (or ? COOH) groups at the end of the PLLA. DSC data indicated that the different compositions of PLLA and PCL had an influence on the thermal and crystallization properties including the glass‐transition temperature (Tg), melting temperature (TM), crystallizing temperature (Tc), melting enthalpy (ΔHm), crystallizing enthalpy (ΔHc), and crystallinity. Gel permeation chromatography (GPC) was employed to study the effect of the composition of PLLA and PCL and reaction time on the molecular weight and the molecular weight distribution of the copolymers. The weight‐average molecular weight of PLLA–PCL multiblock copolymers was up to 180,000 at a composition of 60% PLLA and 40% PCL, whereas that of the homopolymer of PLLA was only 14,000. A polarized optical microscope was used to observe the crystalline morphology of copolymers; the results showed that all polymers exhibited a spherulitic morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5045–5053, 2004 相似文献
18.
Songsu Kang Robert J. Ono Christopher W. Bielawski 《Journal of polymer science. Part A, Polymer chemistry》2013,51(18):3810-3817
Novel rod–coil–rod ABA triblock copolymers, poly(3‐hexylthiophene)‐block‐poly(ethylene)‐block‐poly(3‐hexylthiophene) (P3HT‐b‐PE‐b‐P3HT) were synthesized by using a combination of a Ru‐catalyzed ring‐opening metathesis polymerization of 1,4‐cyclooctadiene in the presence of a suitable chain transfer agent (CTA) and a Ni‐catalyzed Grignard metathesis polymerization of 5‐chloromagnesio‐2‐bromo‐3‐hexylthiophene followed by hydrogenation. Using this methodology, the molecular weights of the poly(butadiene) (PBD) or the P3HT blocks were controlled by adjusting the initial monomer/CTA or the initial monomer/macroinitiator ratio, respectively. In addition, the triblock structure was confirmed by selective oxidative degradation of the PBD block found in the intermediate P3HT‐b‐PBD‐b‐P3HT copolymer produced in the aforementioned method, followed by analysis of the degradation products. Thermal analysis and atomic force microscopy of P3HT‐b‐PE‐b‐P3HT revealed that the material underwent phase separation in the solid state, a feature which may prove useful for improving charge mobilities within electronic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3810–3817 相似文献
19.
Various composites have been proposed in the literature for the fabrication of bioscaffolds for bone tissue engineering. These materials include poly(ε‐caprolactone) (PCL) with hydroxyapatite (HA). Since the biomaterial acts as the medium that transfers mechanical signals from the body to the cells, the fundamental properties of the biomaterials should be characterized. Furthermore, in order to control the processing of these materials into scaffolds, the characterization of the fundamental properties is also necessary. In this study, the physical, thermal, mechanical, and viscoelastic properties of the PCL‐HA micro‐ and nano‐composites were characterized. Although the addition of filler particles increased the compressive modulus by up to 450%, the thermal and viscoelastic properties were unaffected. Furthermore, although the presence of water plasticized the polymer, the viscoelastic behavior was only minimally affected. Testing the composites under various conditions showed that the addition of HA can strengthen PCL without changing its viscoelastic response. The results found in this study can be used to further understand and approximate the time‐dependent behavior of scaffolds for bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
20.
Sheng Zhang Jie Qing Chengdong Xiong Yuxing Peng 《Journal of polymer science. Part A, Polymer chemistry》2004,42(14):3527-3536
AB block copolymers composed of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(amino acid) with a carboxyl group at the end of PEG were synthesized with α‐carboxylic sodium‐ω‐amino‐PEG as a macroinitiator for the ring‐opening polymerization of N‐carboxy anhydride. Characterizations by 1H NMR, IR, and gel permeation chromatography were carried out to confirm that the diblock copolymers were formed. In aqueous media this copolymer formed self‐associated polymer micelles that have a carboxyl group on the surface. The carboxyl groups located at the outer shell of the polymeric micelle were expected to combine with ligands to target specific cell populations. The diameter of the polymer micelles was in the range of 30–80 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3527–3536, 2004 相似文献