首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An interval coloring of a graph is a proper edge coloring such that the set of used colors at every vertex is an interval of integers. Generally, it is an NP‐hard problem to decide whether a graph has an interval coloring or not. A bipartite graph G = (A,B;E) is (α, β)‐biregular if each vertex in A has degree α and each vertex in B has degree β. In this paper we prove that if the (3,4)‐biregular graph G has a cubic subgraph covering the set B then G has an interval coloring. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 122–128, 2004  相似文献   

2.
An edge‐coloring of a graph G with colors is called an interval t‐coloring if all colors are used, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. In 1991, Erd?s constructed a bipartite graph with 27 vertices and maximum degree 13 that has no interval coloring. Erd?s's counterexample is the smallest (in a sense of maximum degree) known bipartite graph that is not interval colorable. On the other hand, in 1992, Hansen showed that all bipartite graphs with maximum degree at most 3 have an interval coloring. In this article, we give some methods for constructing of interval non‐edge‐colorable bipartite graphs. In particular, by these methods, we construct three bipartite graphs that have no interval coloring, contain 20, 19, 21 vertices and have maximum degree 11, 12, 13, respectively. This partially answers a question that arose in [T.R. Jensen, B. Toft, Graph coloring problems, Wiley Interscience Series in Discrete Mathematics and Optimization, 1995, p. 204]. We also consider similar problems for bipartite multigraphs.  相似文献   

3.
《Journal of Graph Theory》2018,87(2):239-252
A proper edge coloring of a graph G with colors is called a cyclic interval t‐coloring if for each vertex v of G the edges incident to v are colored by consecutive colors, under the condition that color 1 is considered as consecutive to color t. We prove that a bipartite graph G of even maximum degree admits a cyclic interval ‐coloring if for every vertex v the degree satisfies either or . We also prove that every Eulerian bipartite graph G with maximum degree at most eight has a cyclic interval coloring. Some results are obtained for ‐biregular graphs, that is, bipartite graphs with the vertices in one part all having degree a and the vertices in the other part all having degree b; it has been conjectured that all these have cyclic interval colorings. We show that all (4, 7)‐biregular graphs as well as all ‐biregular () graphs have cyclic interval colorings. Finally, we prove that all complete multipartite graphs admit cyclic interval colorings; this proves a conjecture of Petrosyan and Mkhitaryan.  相似文献   

4.
A sequence r1, r2, …, r2n such that ri=rn+ i for all 1≤in is called a repetition. A sequence S is called non‐repetitive if no block (i.e. subsequence of consecutive terms of S) is a repetition. Let G be a graph whose edges are colored. A trail is called non‐repetitive if the sequence of colors of its edges is non‐repetitive. If G is a plane graph, a facial non‐repetitive edge‐coloring of G is an edge‐coloring such that any facial trail (i.e. a trail of consecutive edges on the boundary walk of a face) is non‐repetitive. We denote π′f(G) the minimum number of colors of a facial non‐repetitive edge‐coloring of G. In this article, we show that π′f(G)≤8 for any plane graph G. We also get better upper bounds for π′f(G) in the cases when G is a tree, a plane triangulation, a simple 3‐connected plane graph, a hamiltonian plane graph, an outerplanar graph or a Halin graph. The bound 4 for trees is tight. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 38–48, 2010  相似文献   

5.
An acyclic edge‐coloring of a graph is a proper edge‐coloring such that the subgraph induced by the edges of any two colors is acyclic. The acyclic chromatic index of a graph G is the smallest number of colors in an acyclic edge‐coloring of G. We prove that the acyclic chromatic index of a connected cubic graph G is 4, unless G is K4 or K3,3; the acyclic chromatic index of K4 and K3,3 is 5. This result has previously been published by Fiam?ík, but his published proof was erroneous.  相似文献   

6.
《Journal of Graph Theory》2018,87(4):460-474
An odd k‐edge‐coloring of a graph G is a (not necessarily proper) edge‐coloring with at most k colors such that each nonempty color class induces a graph in which every vertex is of odd degree. Pyber (1991) showed that every simple graph is odd 4‐edge‐colorable, and Lužar et al. (2015) showed that connected loopless graphs are odd 5‐edge‐colorable, with one particular exception that is odd 6‐edge‐colorable. In this article, we prove that connected loopless graphs are odd 4‐edge‐colorable, with two particular exceptions that are respectively odd 5‐ and odd 6‐edge‐colorable. Moreover, a color class can be reduced to a size at most 2.  相似文献   

7.
In this note, we prove that every triangulation G on any closed surface has domination number at most . This unifies some results on the domination number of a triangulation on a closed surface.  相似文献   

8.
9.
An edge‐face coloring of a plane graph with edge set E and face set F is a coloring of the elements of EF so that adjacent or incident elements receive different colors. Borodin [Discrete Math 128(1–3):21–33, 1994] proved that every plane graph of maximum degree Δ?10 can be edge‐face colored with Δ + 1 colors. We extend Borodin's result to the case where Δ = 9. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:332‐346, 2011  相似文献   

10.
By Petersen's theorem, a bridgeless cubic graph has a 2‐factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3‐edge‐connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that this is in some sense best possible by constructing an infinite family of 3‐edge‐connected graphs in which every spanning even subgraph has a 5‐cycle as a component. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 37–47, 2009  相似文献   

11.
A graph G with maximum degree Δ and edge chromatic number χ′(G)>Δ is edge‐Δ‐critical if χ′(G?e)=Δ for every edge e of G. It is proved here that the vertex independence number of an edge‐Δ‐critical graph of order n is less than . For large Δ, this improves on the best bound previously known, which was roughly ; the bound conjectured by Vizing, which would be best possible, is . © 2010 Wiley Periodicals, Inc. J Graph Theory 66:98‐103, 2011  相似文献   

12.
A graph G is class II, if its chromatic index is at least Δ + 1. Let H be a maximum Δ‐edge‐colorable subgraph of G. The paper proves best possible lower bounds for |E(H)|/|E(G)|, and structural properties of maximum Δ‐edge‐colorable subgraphs. It is shown that every set of vertex‐disjoint cycles of a class II graph with Δ≥3 can be extended to a maximum Δ‐edge‐colorable subgraph. Simple graphs have a maximum Δ‐edge‐colorable subgraph such that the complement is a matching. Furthermore, a maximum Δ‐edge‐colorable subgraph of a simple graph is always class I. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

13.
For an integer l > 1, the l‐edge‐connectivity of a connected graph with at least l vertices is the smallest number of edges whose removal results in a graph with l components. A connected graph G is (k, l)‐edge‐connected if the l‐edge‐connectivity of G is at least k. In this paper, we present a structural characterization of minimally (k, k)‐edge‐connected graphs. As a result, former characterizations of minimally (2, 2)‐edge‐connected graphs in [J of Graph Theory 3 (1979), 15–22] are extended. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 116–131, 2003  相似文献   

14.
Let γ(G) be the domination number of graph G, thus a graph G is k‐edge‐critical if γ (G) = k, and for every nonadjacent pair of vertices u and υ, γ(G + uυ) = k?1. In Chapter 16 of the book “Domination in Graphs—Advanced Topics,” D. Sumner cites a conjecture of E. Wojcicka under the form “3‐connected 4‐critical graphs are Hamiltonian and perhaps, in general (i.e., for any k ≥ 4), (k?1)‐connected, k‐edge‐critical graphs are Hamiltonian.” In this paper, we prove that the conjecture is not true for k = 4 by constructing a class of 3‐connected 4‐edge‐critical non‐Hamiltonian graphs. © 2005 Wiley Periodicals, Inc.  相似文献   

15.
A bicirculant is a graph admitting an automorphism with exactly two vertex‐orbits of equal size. All non‐isomorphic 4‐valent edge‐transitive bicirculants are characterized in this article. As a corollary, a characterization of 4‐valent arc‐transitive dihedrants is obtained. © 2011 Wiley Periodicals, Inc. J Graph Theory.  相似文献   

16.
Sufficient degree conditions for the existence of properly edge‐colored cycles and paths in edge‐colored graphs, multigraphs and random graphs are investigated. In particular, we prove that an edge‐colored multigraph of order n on at least three colors and with minimum colored degree greater than or equal to ?(n+1)/2? has properly edge‐colored cycles of all possible lengths, including hamiltonian cycles. Longest properly edge‐colored paths and hamiltonian paths between given vertices are considered as well. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 63–86, 2010  相似文献   

17.
An edge‐coloring of a graph G is equitable if, for each vV(G), the number of edges colored with any one color incident with v differs from the number of edges colored with any other color incident with v by at most one. A new sufficient condition for equitable edge‐colorings of simple graphs is obtained. This result covers the previous results, which are due to Hilton and de Werra, verifies a conjecture made by Hilton recently, and substantially extends it to a more general class of graphs. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:175‐197, 2011  相似文献   

18.
The restricted‐edge‐connectivity of a graph G, denoted by λ′(G), is defined as the minimum cardinality over all edge‐cuts S of G, where GS contains no isolated vertices. The graph G is called λ′‐optimal, if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G. A graph is super‐edge‐connected, if every minimum edge‐cut consists of edges adjacent to a vertex of minimum degree. In this paper, we present sufficient conditions for arbitrary, triangle‐free, and bipartite graphs to be λ′‐optimal, as well as conditions depending on the clique number. These conditions imply super‐edge‐connectivity, if δ (G) ≥ 3, and the equality of edge‐connectivity and minimum degree. Different examples will show that these conditions are best possible and independent of other results in this area. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 228–246, 2005  相似文献   

19.
Let X be a vertex‐transitive graph, that is, the automorphism group Aut(X) of X is transitive on the vertex set of X. The graph X is said to be symmetric if Aut(X) is transitive on the arc set of X. suppose that Aut(X) has two orbits of the same length on the arc set of X. Then X is said to be half‐arc‐transitive or half‐edge‐transitive if Aut(X) has one or two orbits on the edge set of X, respectively. Stabilizers of symmetric and half‐arc‐transitive graphs have been investigated by many authors. For example, see Tutte [Canad J Math 11 (1959), 621–624] and Conder and Maru?i? [J Combin Theory Ser B 88 (2003), 67–76]. It is trivial to construct connected tetravalent symmetric graphs with arbitrarily large stabilizers, and by Maru?i? [Discrete Math 299 (2005), 180–193], connected tetravalent half‐arc‐transitive graphs can have arbitrarily large stabilizers. In this article, we show that connected tetravalent half‐edge‐transitive graphs can also have arbitrarily large stabilizers. A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in Aut(Cay(G, S)). There are only a few known examples of connected tetravalent non‐normal Cayley graphs on non‐abelian simple groups. In this article, we give a sufficient condition for non‐normal Cayley graphs and by using the condition, infinitely many connected tetravalent non‐normal Cayley graphs are constructed. As an application, all connected tetravalent non‐normal Cayley graphs on the alternating group A6 are determined. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

20.
An infinite family of cubic edge‐transitive but not vertex‐transitive graphs with edge stabilizer isomorphic to ℤ2 is constructed. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 152–160, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号