首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past, perfectly matched layer (PML) equations have been constructed in Cartesian and spherical coordinates. In this article, the focus is on the development of a PML absorbing technique for treating numerical boundaries, especially those with unbounded domains, in a generalized coordinate system for a flow in an arbitrary direction. The PML equations for two-dimensional Euler equations are developed in split form through a space–time transformation involving a complex variable transformation with the application of a pseudo-mean-flow in the PML domain. A numerical solver is developed using conventional numerical schemes without employing any form of filtering or artificial dissipation to solve the governing PML equations for two-dimensional Euler equations in a generalized coordinate system. Physical domains of arbitrary shapes are considered and numerical simulations are carried out to validate and demonstrate the effectiveness of the PML as an absorbing boundary condition in generalized coordinates.  相似文献   

2.
An efficient discontinuous Galerkin formulation is applied to the solution of the linearized Euler equations and the acoustic perturbation equations for the simulation of aeroacoustic propagation in two‐dimensional and axisymmetric problems, with triangular and quadrilateral elements. To improve computational efficiency, a new strategy of variable interpolation order is proposed in addition to a quadrature‐free approach and parallel implementation. Moreover, an accurate wall boundary condition is formulated on the basis of the solution of the Riemann problem for a reflective wall. Time discretization is based on a low dissipation formulation of a fourth‐order, low storage Runge–Kutta scheme. Along the far‐field boundaries a perfectly matched layer boundary condition is used. For the far‐field computations, the integral formulation of Ffowcs Williams and Hawkings is coupled with the near‐field solver. The efficiency and accuracy of the proposed variable order formulation is assessed for realistic geometries, namely sound propagation around a high‐lift airfoil and the Munt problem. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Here we consider the stability of flow along a streamwise corner formed by the intersection of two large flat plates held perpendicular to each other. Self-similar solutions for the steady laminar mean flow in the corner region have been obtained by solving the boundary layer equations for zero and nonzero streamwise pressure gradients. The stability of the mean flow is investigated using linear stability analysis. An eigensolver has been developed to solve the resulting linear eigenvalue problem either in a global mode to obtain an approximation to all the dominant eigenmodes or in a local mode to refine a particular eigenmode. The stability results indicate that the entire spectrum of two-dimensional and oblique viscous modes of a two-dimensional Blasius boundary layer is active in the case of a corner layer as well, but away from the cornerline. In a corner region of finite spanwise extent, the continuous spectrum of oblique modes degenerates to a discrete spectrum of modes of increasing spanwise wave number. The effect of the corner on the two-dimensional viscous instability is small and decreases the growth rate. The growth rate of outgoing oblique disturbances is observed to decrease, while the growth rate of incoming oblique disturbances is enhanced by the corner. This asymmetry between the outgoing and incoming viscous modes increases with increasing obliqueness of the disturbance. The instability of a zero pressure gradient corner layer is dominated by the viscous modes; however, an inviscid corner mode is also observed. The critical Reynolds number of the inviscid mode rapidly decreases with even a small adverse streamwise pressure gradient and the inviscid mode becomes the dominant one. Received 17 March 1998 and accepted 28 April 1999  相似文献   

4.
A facile method to realize perfectly matched layers for elastic waves   总被引:1,自引:0,他引:1  
In perfectly matched layer (PML) technique, an artificial layer is introduced in the simulation of wave propagation as a boundary condition which absorbs all incident waves without any reflection. Such a layer is generally thought to be unrealizable due to its complicated material formulation. In this paper, on the basis of transformation elastodynamics and complex coordinate transformation, a novel method is proposed to design PMLs for elastic waves. By applying the conformal transformation technique, the proposed PML is formulated in terms of conventional constitutive parameters and then can be easily realized by functionally graded viscoelastic materials. We perform numerical simulations to validate the material realization and performance of this PML.  相似文献   

5.
《Wave Motion》2007,45(7-8):531-548
We derive a perfectly matched layer-like damping layer for the nonlinear wave equation. In the layer, only two auxiliary variables are needed. In the linear case the layer is perfectly matched, but in the nonlinear case it is not. Well posedness is established for the linear case. We also prove various energy estimates which can be used as a starting point for establishing stability of more general cases. In particular, we are able to show estimates for a special type of nonlinearity.Numerical experiments that show the effectiveness of the layer are presented both for nonlinear and linear problems. In the computations, we use an eighth order summation-by-parts discretization in space and implement the boundary conditions using a penalty procedure. We present new stability results for this discretization applied to the second order wave equation in the case with Dirichlet boundary conditions.  相似文献   

6.
The perfectly matched layer (PML) is nowadays considered as the best optimum absorbing boundary condition available. However, the PML with the classical stretching tensor has certain limitations. Strangely, these limitations have rarely been addressed in elastic wave modelling. For example, substantial reflections occur when strong evanescent waves are propagating parallel to the interface. To circumvent problems like this, the complex frequency shifted stretching tensor has been introduced in electromagnetic modelling. In this paper we show that the convolution PML with this stretching tensor as used in electromagnetic modelling can be adapted for elastic wave modelling. Numerical results of a model where the presence of evanescent waves is predominant show that the PML based on the complex frequency shifted stretching tensor can improve the performance of the absorbing boundary layer considerably.  相似文献   

7.
Absorbing boundary conditions for computational aeroacoustics (CAA) are reviewed. Commonly used absorbing zonal techniques, such as sponge layers and buffer zones, as well as perfectly matched layers (PML) are discussed. The basic ideas and central results of these methods are surveyed and summarized. Special attention will be given to the recently emerged PML technique and its application to CAA. Numerical examples are presented for PML in duct acoustics. A comparison of PML and non-PML absorbing boundary conditions will also be given.  相似文献   

8.
We consider the weakly nonlinear spatial evolution of a pair of varicose oblique waves and a pair of sinuous oblique waves superimposed on an inviscid Bickley jet, with each wave being slightly amplified on a linear basis. The two pairs are assumed to both be inclined at the same angle to the plane of the jet. A nonlinear critical layer analysis is employed to derive equations governing the evolution of the instability wave amplitudes, which contain a coupling between the modes. These equations are discussed and solved numerically, and it is shown that, as in related work for other flows, these equations may develop a singularity at a finite distance downstream.  相似文献   

9.
This paper deals with the numerical performance of a sponge layer as a non-reflective boundary condition. This technique is well known and widely adopted, but only recently have the reasons for a sponge failure been recognised, in analysis by Mani. For multidimensional problems, the ineffectiveness of the method is due to the self-reflections of the sponge occurring when it interacts with an oblique acoustic wave. Based on his theoretical investigations, Mani gives some useful guidelines for implementing effective sponge layers. However, in our opinion, some practical indications are still missing from the current literature. Here, an extensive numerical study of the performance of this technique is presented. Moreover, we analyse a reduced sponge implementation characterised by undamped partial differential equations for the velocity components. The main aim of this paper relies on the determination of the minimal width of the layer, as well as of the corresponding strength, required to obtain a reflection error of no more than a few per cent of that observed when solving the same problem on the same grid, but without employing the sponge layer term. For this purpose, a test case of computational aeroacoustics, the single airfoil gust response problem, has been addressed in several configurations. As a direct consequence of our investigation, we present a well documented and highly validated reference solution for the far-field acoustic intensity, a result that is not well established in the literature. Lastly, the proof of the accuracy of an algorithm for coupling sub-domains solved by the linear and non-liner Euler governing equations is given. This result is here exploited to adopt a linear-based sponge layer even in a non-linear computation.  相似文献   

10.
Steady simple waves are investigated in an incompressible conducting ideal inhomogeneously and isotropically magnetizable fluid moving along the lines of force of a magnetic field. The integration of the system of equations describing such waves is reduced to the calculation of quadrature expressions in the case of an arbitrary magnetization law. It is shown that, depending on the magnetic properties of the medium, different types of steady waves are possible: magnetizing waves in a diamagnetic fluid and demagnetizing waves in a paramagnetic fluid. The results are given of calculations of demagnetizing waves in a conducting ferromagnetic fluid. An analysis is made of the various possible flow regimes of a conducting magnetizable fluid at the point of a perfectly conducting corner.  相似文献   

11.
Internal waves propagating in an idealized two-layer atmosphere are studied numerically. The governing equations are the inviscid anelastic equations for a perfect gas atmosphere. The numerical formulation eliminates all variables in the linear terms except vertical velocity, which are then treated implicitly. Nonlinear terms are treated explicitly. The basic state is a two-layer flow with continuous density at the interface. Each layer has a unique constant for the Brunt–Väisälä frequency. Waves are forced at the bottom of the domain, are periodic in the horizontal direction, and form a finite wave packet in the vertical. The results show that the wave packet forms a mean flow that is confined to the interface region that persists long after the wave packet has moved away. Large-amplitude waves are forced to break beneath the interface.  相似文献   

12.
The method of nonlinear parabolized stability equations (PSE) is applied in the simulation of vortex structures in compressible mixing layer. The spatially-evolving unstable waves, which dominate the vortex structure, are investigated through spatial marching method. The instantaneous flow field is obtained by adding the harmonic waves to basic flow. The results show that T-S waves do not keep growing exponentially as the linear evolution, the energy transfer to high order harmonic modes, and that finally all harmonic modes get saturated due to nonlinear interaction. The mean flow distortion induced by the nonlinear interaction between the harmonic modes and their conjugate harmonic ones, makes great change of the average flow and increases the thickness of mixing layer. PSE methods can well capture the two- and three-dimensional large scale nonlinear vortex structures in mixing layers such as vortex roll-up, vortex pairing, and Λ vortex.  相似文献   

13.
For infinite perfectly elastic Mooney materials, nonlinear plane waves are examined in both two and three dimensions. In two dimensions, longitudinal and shear plane waves are examined, while in three dimensions, longitudinal and torsional plane waves are considered. These exact dynamic deformations, applying to the incompressible perfectly elastic Mooney material, can be viewed as extensions of the corresponding static deformations first derived by Adkins [1] and Klingbeil and Shield [2]. Furthermore, the Mooney strain-energy function is the most general material admitting nontrivial dynamic deformations of this type. For two dimensions the determination of plane wave solutions reduces to elementary mathematical analysis, while in three dimensions an integral of the governing system of highly nonlinear ordinary differential equations is determined. In the latter case, solutions corresponding to particular parameter values are shown graphically. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
An efficient method to compute the scattering of a guided wave by a localized defect, in an elastic waveguide of infinite extent and bounded cross section, is considered. It relies on the use of perfectly matched layers (PML) to reduce the problem to a bounded portion of the guide, allowing for a classical finite element discretization. The difficulty here comes from the existence of backward propagating modes, which are not correctly handled by the PML. We propose a simple strategy, based on finite-dimensional linear algebra arguments and using the knowledge of the modes, to recover a correct approximation to the solution with a low additional cost compared to the standard PML approach. Numerical experiments are presented in the two-dimensional case involving Rayleigh–Lamb modes.  相似文献   

15.
An infinite system of two-dimensional equations of motion of isotropic elastic plates with edge and corner conditions are deduced from the three-dimensional equations of elasticity by expansion of displacements in a series of trigonometrical functions and a linear function of the thickness coordinate of the plate. The linear term in the expansion is to accommodate the in-plane displacements induced by the rotation of the plate normal in low-frequency flexural motions. A system of first-order equations of flexural motions and accompanying boundary conditions are extracted from the infinite system. It is shown that the present system of equations is equivalent to the Mindlin’s first-order equations, and the dispersion relation of straight-crested waves of the present theory is identical to that of the Mindlin’s without introducing any corrections. Reduction of present equations and boundary conditions to those of classical plate theories of flexural motions is also presented.  相似文献   

16.
A method for solving equations that describe the dynamics of wave packets of the Tollmien–Schlichting waves in the boundary layer is proposed. The method of splitting the initial problem into the linear and nonlinear parts at each time step is used. The linear part is resolved by using an equation for spectral components of the wave packet with a subsequent Fourier transform from the space of wavenumbers to the physical space. A system of ordinary differential equations is solved in the physical space. The Fourier transform is performed by means of the library procedure of the fast Fourier transform. As examples, the problems solved were the linear dynamics of the wave packet concentrated in the vicinity of the instability region (i.e., a set of wave vectors in the space of wavenumbers for which the imaginary part of the eigenfrequency of the Tollmien–Schlichting waves is positive) and the nonlinear dynamics of the wave packet overlapping the instability region.  相似文献   

17.
Long waves on a running stream in shallow water are shown theoretically to be susceptible, in some circumstances, to a viscous instability, which can lead to rapid linear and nonlinear growth. The theory is based on high Reynolds numbers and involves viscous-inviscid interplay, leading in effect to a viscosity-modified version of the classical nonlinear K dV equation. This is with a pre-existing mean flow present. The modification is due to a Stokes wall layer and it can cause severe linear and nonlinear instability. A model profile for the original mean flow is studied first, followed by a smooth realistic profile, the latter provoking a nonlinear critical layer in addition. The theory is linked with interactive-boundary-layer analysis and linear and nonlinear Tollmien-Schlichting waves and there is some analogy with the recent findings (in work by the authors) of nonlinear break-ups occurring in any unsteady interactive boundary layer, including the external boundary layer and internal channel or pipe flows.  相似文献   

18.
The linear spatial stability of the incompressible corner flow under pressure gradient has been studied. A self-similar form has been used for the mean flow, which reduces the related problem to the solution of a two-dimensional problem. The stability problem was formulated using the parabolised stability equations (PSE) and results were obtained for the viscous modes at medium and high frequencies. The related N-factors indicate that the flow is stable at these frequencies, but probably unstable for small frequencies. Furthermore the inviscid mode for each mean flow was obtained and the results indicate that its importance increases considerably with an increase in the adverse pressure gradient. Finally the dependence of the stability characteristics on the extent of the domain is also considered.  相似文献   

19.
This paper presents a numerical method for solving the two‐dimensional unsteady incompressible Navier–Stokes equations in a vorticity–velocity formulation. The method is applicable for simulating the nonlinear wave interaction in a two‐dimensional boundary layer flow. It is based on combined compact difference schemes of up to 12th order for discretization of the spatial derivatives on equidistant grids and a fourth‐order five‐ to six‐alternating‐stage Runge–Kutta method for temporal integration. The spatial and temporal schemes are optimized together for the first derivative in a downstream direction to achieve a better spectral resolution. In this method, the dispersion and dissipation errors have been minimized to simulate physical waves accurately. At the same time, the schemes can efficiently suppress numerical grid‐mesh oscillations. The results of test calculations on coarse grids are in good agreement with the linear stability theory and comparable with other works. The accuracy and the efficiency of the current code indicate its potential to be extended to three‐dimensional cases in which full boundary layer transition happens. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
超声速平板边界层斜波失稳转捩过程研究   总被引:6,自引:0,他引:6  
马汉东  潘宏禄  王强 《力学学报》2007,39(2):153-157
以5阶迎风和6阶对称紧致格式混合差分求解三维可压缩滤波Navier-Stokes方程,对Mach 数为4.5, Reynolds数为10000的空间发展平板边界层湍流进行了大涡模拟. 时间推进采用 紧致存储3阶Runge-Kutta方法,亚格子尺度模型为修正Smagorinsky涡黏性模型. 通过在 入口边界叠加一对线性最不稳定第一模态斜波扰动,数值模拟得到了平板层流边界层失稳转 捩直至湍流的演化过程. 对流场转捩过程中瞬时量及统计平均量的分析表明,数值模拟结果 与理论吻合,得到的Y型剪切层、交替\Lambda涡结构以及转捩后期的发卡涡结构的发展 变化与相关文献结果一致,湍流流谱定性合理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号