首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rapid, simple and reliable HPLC/UV and LC‐ESI‐MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C30 column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC‐ESI‐MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC‐ESI‐MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC‐ESI‐MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC‐ESI‐MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A highly sensitive and selective on‐line two‐dimensional reversed‐phase liquid chromatography/electrospray ionization–tandem mass spectrometry (2D‐LC‐ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D‐LC‐ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5–10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
CSUOH0901, a novel anticancer derivative of nimesulide, exhibits very promising anticancer activities in various cancer cell lines. In order to support further pharmacological and toxicological studies of this promising anticancer drug candidate, an LC‐MS/MS method was developed and validated in accordance with the US Food and Drug Administration guidelines. The drug molecules were extracted from plasma samples by protein precipitation and then analyzed with LC‐ESI‐MS/MS. An excellent analyte separation was achieved using a phenomenex C18 column with a mobile phase of 90% methanol and 5 m m of ammonium formate. The validated linear dynamic range was between 0.5 and 100 ng/mL and the achieved correlation coefficient (r2) was >0.9996. The results of inter‐ and intra‐day precision and accuracy were satisfactory, that is, <12% for accuracy and within ±5% for precision at a low and high quality control concentrations, respectively. In addition, the analyte and internal standard (JCC76) were found to be stable under the storage conditions at ?20°C for about 2 months. Hence, the acquired results proved that the LC‐ESI‐MS/MS method developed is precise, accurate and selective for the quantification of CSUOH0901 in plasma, and can be used for pharmacokinetic studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive and specific method based on liquid chromatography‐tandem mass spectrometry using electrospray ionization (LC‐ESI‐MS/MS) has been developed for the determination of Schisandrin and Schisandrin B in rat plasma. A 100 μL plasma sample was extracted by methyl tert‐butyl ether after spiking the samples with nimodipine (internal standard) and performed on an XTerra®MS‐C18 column (150 mm × 2.1 mm, 3.5 μm) with the mobile phase of acetonitrile–water–formic acid (80:20:0.2, v/v) at a flow rate of 0.2 mL/min in a run time of 8.5 min. The lower limit of quantification of the method was 40 ng/mL for Schisandrin and 20 ng/mL for Schisandrin B. The method showed reproducibility with intra‐day and inter‐day precision of less than 13.8% RSD, as well as accuracy, with inter‐ and intra‐assay accuracies between 93.5 and 107.2%. Finally, the LC‐ESI‐MS/MS method was successfully applied to study the pharmacokinetics of Schisandrin and Schisandrin B in rats after administration of Wurenchun commercial formulations to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A very accurate and selective LC‐MS/MS method was developed and validated for the quantification of 2′‐C‐modified nucleoside triphosphate in liver tissue samples. An efficient pretreatment procedure of liver tissue samples was developed, using a fully automated SPE procedure with 96‐well SPE plate (weak anion exchange sorbent, 30 mg). Nucleotide hydrophilic interaction chromatography has been performed on an aminopropyl column (100 mm×2.0 mm, 3 μm) using a gradient mixture of ACN and ACN/water (5:95 v/v) with 20 mM ammonium acetate at pH 9.45 as mobile phase at 300 μL/min flow rate. The 2′‐C‐modified nucleoside triphosphate was detected in the negative ESI mode in multiple reaction monitoring (MRM) mode. Calibration curve was linear over the 0.05–50 μM concentration range. Satisfying results, confirming the high reliability of the established LC‐MS/MS method, were obtained for intraday precision (CV = 2.5–9.1%) and accuracy (92.6–94.8%) and interday precision (CV = 9.6–11.5%) and accuracy (94.4–102.4%) as well as for recovery (82.0–112.6%) and selectivity. The method has been successfully applied for pharmacokinetic studies of 2′‐C‐methyl‐cytidine‐triphosphate in liver tissue samples.  相似文献   

6.
Pogostone is an important constituent of Pogostemon cablin (Blanco) Benth., and possesses various known bioactivities. A rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the analysis of pogostone in rat plasma using chrysophanol as internal standard (IS). The analytes were extracted with methanol and separated using a reversed‐phase YMC‐UltraHT Pro C18 column. Elution was achieved with a mobile phase consisting of methanol–water (75:25, v/v) for 5 min at a flow rate of 400 μL/min. The precursor/product transitions (m/z) under MS/MS detection with negative electrospray ionization (ESI) were 223.0 → 139.0 and 253.1 → 224.9 for pogostone and IS, respectively. The calibration curve was linear over the concentration range 0.05–160 µg/mL (r = 0.9996). The intra‐ and inter‐day accuracy and precision were within ±10%. The validated method was successfully applied to the preclinical pharmacokinetic investigation of pogostone in rats after intravenous (5, 10 and 20 mg/kg) and oral administration (5, 10 and 20 mg/kg). Finally, the oral absolute bioavailability of pogostone in rats was calculated to be 70.39, 78.18 and 83.99% for 5, 10 and 20 mg/kg, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Rapid, simple and reliable HPLC/DAD and LC‐ESI‐MS methods for the simultaneous determination of baicalin and forsythin in the traditional Chinese medicinal preparation Shuanghuanglian oral liquid were described and validated. The separation condition for HPLC/DAD was optimized using a BDS hypersil C18 column (Thermo, 2.1 × 150 mm, particle size 5 μm) by gradient elution using methanol‐0.2 % ammonium acetate as the mobile phase. The suitable detection wavelength was set at 277 nm for the quantitative analysis of baicalin and forsythin in this method. Some operational parameters of the ESI interface were optimized, negative m/z 445[M?H]? for baicalin and negative m/z 593[M+CH3COO]? for forsythin, positive m/z 447[M+H]+ for baicalin and positive m/z 552[M+NH 4]+ for forsythin, respectively. These HPLC/DAD and LC‐ESI‐MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). These methods can be used as a complementary method for the commercial quality control of Shuanghuanglian oral liquid and its pharmaceutical preparations.  相似文献   

8.
Heterophyllin B (HB) is a cyclic octapeptide isolated from Pseudostellaria heterophylla. HB is used as the quality control index for evaluating P. heterophylla in the Chinese Pharmacopoeia. A rapid and sensitive LC‐ESI‐MS/MS method was developed and validated for the analysis of HB in rat plasma. Sample preparation consisted of a solid‐phase extraction step for the removal of interference and preconcentration of the target analyte HB and the internal standard N‐acetylcysteine before chromatographic analysis by MS/MS detection. The separation of HB and N‐acetylcysteine was performed using a Hypersil GOLDTM C18 column and a mixture of methanol–water (60:40, v/v) containing 10 mmol/L ammonium formate and 0.1% formic acid as the mobile phase. The determination step was optimized in the selected reaction monitoring mode for the highly selective and sensitive quantitation of HB in rat plasma. Intra‐ and inter‐assay precision (as relative standard deviation) was ≤9.1%, and accuracy was between 92.6 and 102.7%. The validated method was successfully applied to quantify HB concentrations up to 7 h after tail intravenous injections of 2.08, 4.16 and 8.32 mg/kg HB in rats. The LC‐MS/MS method identified the relevant pharmacokinetic parameters of HB and its studied analog. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A highly sensitive and selective method using LC‐ESI‐MS/MS and tandem‐SPE was developed to detect trace amounts of avoparcin (AV) antibiotics in animal tissues and milk. Data acquisition using MS/MS was achieved by applying multiple reaction monitoring of the product ions of [M + 3H]3+ and the major product ions of AV‐α and ‐β at m/z 637 → 86/113/130 and m/z 649 → 86/113/130 in ESI(+) mode. The calculated instrumental LODs were 3 ng/mL. The sample preparation was described that the extraction using 5% TFA and the tandem‐SPE with an ion‐exchange (SAX) and InertSep C18‐A cartridge clean‐up enable us to determine AV in samples. Ion suppression was decreased by concentration rates of each sample solution. These SPE concentration levels could be used to detect quantities of 5 ppb (milk), 10 ppb (beef), and 25 ppb (chicken muscle and liver). The matrix matching calibration graphs obtained for both AV‐α (r >0.996) and ‐β (r >0.998) from animal tissues and milk were linear over the calibration ranges. AV recovery from samples was higher than 73.3% and the RSD was less than 12.0% (n = 5).  相似文献   

10.
A simple, specific, sensitive and rapid LC‐ESI‐MS/MS method has been developed and validated for the quantification of 4‐methylpyrazole in dog plasma using N‐methylnicotinamide‐d4 as an internal standard (IS) as per regulatory guidelines. Sample preparation was accomplished through a simple protein precipitation. Chromatographic separation of 4‐methylpyrazole and the IS was performed on a monolithic (Chromolith RP18e) column using an isocratic mobile phase comprising 0.2% formic acid in water and acetonitrile (20:80, v/v) at a flow rate of 1.0 mL/min. Elution of 4‐methylpyrazole and the IS occurred at ~1.60 and 1.56 min, respectively. The total chromatographic run time was 3.2 min. A linear response function was established in the concentration range of 4.96–4955 ng/mL. The intra‐ and inter‐day accuracy and precision were in the ranges 1.81–12.9 and 3.80–11.1%, respectively. This novel method has been applied to a pharmacokinetic study in dogs.  相似文献   

11.
A LC‐MS/MS method for the determination of a hydrophilic paclitaxel derivative 7‐xylosyl‐10‐deacetylpaclitaxel in rat plasma was developed to evaluate the pharmacokinetics of 7‐xylosyl‐10‐deacetylpaclitaxel in the rats. 7‐Xylosyl‐10‐deacetylpaclitaxel and docetaxel (IS for 7‐xylosyl‐10‐deacetylpaclitaxel) were extracted from rat plasma with acetic ether and analyzed on a Hypersil C18 column (4.6 × 150 mm i.d., particle size 5 µm) with the mobile phase of ACN/0.05% formic acid (50:50, v/v). The analytes were detected using an ESI MS/MS in the multiple reaction monitoring mode. The standard curves for 7‐xylosyl‐10‐deacetylpaclitaxel in plasma were linear (>0.999) over the concentration range of 2.0–1000 ng/mL with a weighting of 1/concentration2. The method showed a satisfactory sensitivity (2.0 ng/mL using 50 µL plasma), precision (CV ≤ 10.1%), accuracy (relative error ?12.4 to 12.0%), and selectivity. This method was successfully applied to the pharmacokinetic study of 7‐xylosyl‐10‐deacetylpaclitaxel in rat plasma after intravenous administration of 7‐xylosyl‐10‐deacetylpaclitaxel to female Wistar rats. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
MS Binding Assays represent a label‐free alternative to radioligand binding assays. In this study, we present an LC‐ESI‐MS/MS method for the quantification of (R,R)‐4‐(2‐benzhydryloxyethyl)‐1‐(4‐fluorobenzyl)piperidin‐3‐ol [(R,R)‐D‐84, (R,R)‐ 1 ], (S,S)‐reboxetine [(S,S)‐ 2 ], and (S)‐citalopram [(S)‐ 3 ] employed as highly selective nonlabeled reporter ligands in MS Binding Assays addressing the dopamine [DAT, (R,R)‐D‐84], norepinephrine [NET, (S,S)‐reboxetine] and serotonin transporter [SERT, (S)‐citalopram], respectively. The developed LC‐ESI‐MS/MS method uses a pentafluorphenyl stationary phase in combination with a mobile phase composed of acetonitrile and ammonium formate buffer for chromatography and a triple quadrupole mass spectrometer in the multiple reaction monitoring mode for mass spectrometric detection. Quantification is based on deuterated derivatives of all three analytes serving as internal standards. The established LC‐ESI‐MS/MS method enables fast, robust, selective and highly sensitive quantification of all three reporter ligands in a single chromatographic run. The method was validated according to the Center for Drug Evaluation and Research (CDER) guideline for bioanalytical method validation regarding selectivity, accuracy, precision, calibration curve and sensitivity. Finally, filtration‐based MS Binding Assays were performed for all three monoamine transporters based on this LC‐ESI‐MS/MS quantification method as read out. The affinities determined in saturation experiments for (R,R)‐D‐84 toward hDAT, for (S,S)‐reboxetine toward hNET, and for (S)‐citalopram toward hSERT, respectively, were in good accordance with results from literature, clearly demonstrating that the established MS Binding Assays have the potential to be an efficient alternative to radioligand binding assays widely used for this purpose so far.  相似文献   

13.
The present investigation describes the development and validation of a sensitive liquid chromatography–mass spectrometry/mass spectrometry (LC‐MS/MS) method for the estimation of dorsomorphin in rat plasma. A sensitive LC‐MS/MS method was developed using multiple reaction monitoring mode, with the transition of m/z (Q1/Q3) 400.2/289.3 for dorsomorphin and m/z (Q1/Q3) 306.2/236.3 for zaleplon. Chromatographic separation was achieved on a reverse phase Agilent XDB C18 column (100 × 4.6 mm, 5 µm). The mobile phase consisted of acetonitrile and 5 mm ammonium acetate buffer (pH 6.0) 90:10 v/v, at a flow rate of 0.8 mL/min. The effluence was ionized in positive ion mode by electrospray ionization (ESI) and quantitated by mass spectrometry. The retention times of dorsomorphin and internal standard were found to be 2.13 and 1.13 min, respectively. Mean extraction recovery of dorsomorphin and internal standard in rat plasma was above 80%. Dorsomorphin calibration curve in rat plasma was linear (r2 ≥ 0.99) ranging from 0.005 to 10 µg/mL. Inter‐day and intra‐day precision and accuracy were found to be within 85–115% (coefficient of variation). This method was successfully applied for evaluation of the oral pharmacokinetic profile of dorsomorphin in male Wistar rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive and rapid LC‐MS/MS method has been developed and validated for quantifying swertianolin in rat plasma using rutin as an internal standard (IS). Following liquid–liquid extraction with ethyl acetate, chromatographic separation for swertianolin was achieved on a C18 column with a gradient elution using 0.1% formic acid as mobile phase A and acetonitrile as mobile phase B at a flow rate of 0.3 mL/min. The detection was performed on a tandem mass spectrometer using multiple reaction monitoring via an electrospray ionization source and operating in the negative ionization mode. The optimized mass transition ion pairs (m/z) for quantitation were 435.1/272.0 for swertianolin and 609.2/300.1 for IS. The lower limit of quantitation was 0.5 ng/mL within a linear range of 0.5–500 ng/mL. Intra‐day and inter‐day precision was less than 6.8%. The accuracy was in the range of ?13.9 to 12.0%. The mean recovery of swertianolin was >66.7%. The proposed method was successfully applied in evaluating the pharmacokinetics of swertianolin after an oral dose of 50 mg/kg Swertia mussotii extract in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A rapid and sensitive high‐performance LC‐MS/MS method was developed and validated for the simultaneous quantification of codeine and its metabolite morphine in human plasma using donepezil as an internal standard (IS). Following a single liquid‐liquid extraction with ethyl acetate, the analytes were separated using an isocratic mobile phase on a C18 column and analyzed by MS/MS in the selected reaction monitoring mode using the respective [M+H]+ ions, mass‐to‐charge ratio (m/z) 300/165 for codeine, m/z 286/165 for morphine and m/z 380/91 for IS. The method exhibited a linear dynamic range of 0.2–100/0.5–250 ng/mL for codeine/morphine in human plasma, respectively. The lower LOQs were 0.2 and 0.5 ng/mL for codeine and its metabolite morphine using 0.5 mL of human plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated LC‐MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 30 mg codeine phosphate.  相似文献   

16.
A fast, sensitive, and efficient ultra‐fast LC–ESI‐MS/MS method was developed for the simultaneous quantitation of six highly toxic Aconitum alkaloids, that is, aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, in rat plasma after oral administration of crude ethanol extracts from Aconiti kusnezoffii radix by ultrasonic extraction, reflux extraction for 1 h, and reflux extraction for 3 h, respectively. The separation of six Aconitum alkaloids and aminopyrine (internal standard) was performed on an InertSustain® C18 column, and the quantification of the analytes was performed on a 4000Q ultra‐fast LC–MS/MS system with turbo ion spray source in the positive ion and multiple‐reaction monitoring mode. Absolute recoveries ranged within 65.06–85.1% for plasma samples. The intra‐ and interday precision and accuracy of analytes were satisfactory. The methods were validated with sensitivity reaching the lower LOQ for aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, which were 0.025, 0.025, 0.050, 0.025, 0.025, and 0.100 ng/mL, respectively. The method was successfully applied to a pharmacokinetic study of six Aconitum alkaloids in rat plasma after oral administration of crude ethanol extracts from the raw root of Aconitum kusnezoffii Reichb. by three different extraction processes.  相似文献   

17.
A sensitive and high‐throughput LC‐MS/MS method has been developed and validated for the combined determination of esomeprazole and naproxen in human plasma with ibuprofen as internal standard. Solid‐phase extraction was used to extract both analytes and internal standard from human plasma. Chromatographic separation was achieved in 4.0 min on XBridge C18 column using acetonitrile–25 mM ammonium formate (70:30, v/v) as mobile phase. Mass detection was achieved by ESI/MS/MS in negative ion mode, monitoring at m/z 344.19 → 194.12, 229.12 → 169.05 and 205.13 → 161.07 for esomeprazole, naproxen and IS, respectively. The calibration curves were linear from 3.00 to 700.02 ng/mL for esomeprazole and 0.50 to 150.08 ng/mL for naproxen. The intra‐ and inter‐batch precision and accuracy across four quality control levels met established criteria of US Food and Drug Administration guidelines. The assay is suitable for measuring accurate esomeprazole and naproxen plasma concentrations in human bioequivalence study following combined administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A simple, sensitive and specific liquid chromatography tandem mass spectrometry (LC‐ESI‐MS/MS) method was developed for the quantification of desvenlafaxine in human plasma using desvenlafaxine d6 as an internal standard (IS). Chromatographic separation was performed using a Thermo‐BDS hypersil C8 column (50 × 4.6 mm, 3 µm) with an isocratic mobile phase composed of 5 mM ammonium acetate buffer: methanol (20:80, v/v), at a flow rate of 0.80 mL/min. Desvenlafaxine and desvenlafaxine d6 were detected with proton adducts at m/z 264.2/58.1 and 270.2/ 64.1 in multiple reaction monitoring positive mode, respectively. Liquid–liquid extraction was used to extract the drug and the IS. The method was linear over the concentration range 1.001–400.352 ng/mL with a correlation coefficient of ≥0.9994. This method demonstrated intra and inter‐day precision within 0.7–5.5 and 1.9–6.8%, and accuracy within 95.3–107.4 and 93.4–99.5%. Desvenlafaxine was found to be stable throughout the freeze–thaw cycles, bench‐top and long‐term matrix stability studies. The developed and validated method can be successfully applied for the bioequivalence/pharmacokinetic studies of desvenlafaxine in pharmaceutical dosage forms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A simple and sensitive liquid chromatography–electrospray ionization–tandem mass spectrometry (LC‐ESI‐MS/MS) technique was developed and validated for the determination of sibutramine and its N‐desmethyl metabolites (M1 and M2) in human plasma. After extraction with methyl t‐butyl ether, chromatographic separation of analytes in human plasma was performed using a reverse‐phase Luna C18 column with a mobile phase of acetonitrile–10 mm ammonium formate buffer (50:50, v/v) and quantified by ESI‐MS/MS detection in positive ion mode. The flow rate of the mobile phase was 200 μL/min and the retention times of sibutramine, M1, M2 and internal standard (chlorpheniramine) were 1.5, 1.4, 1.3 and 0.9 min, respectively. The calibration curves were linear over the range 0.05–20 ng/mL, for sibutramine, M1 and M2. The lower limit of quantification was 0.05 ng/mL using 500 μL of human plasma. The mean accuracy and the precision in the intra‐ and inter‐day validation for sibutramine, M1 and M2 were acceptable. This LC‐MS/MS method showed improved sensitivity and a short run time for the quantification of sibutramine and its two active metabolites in plasma. The validated method was successfully applied to a pharmacokinetic study in human. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A simple, robust, and rapid LC–MS/MS method has been developed and validated for the simultaneous quantitation of clopidogrel and its active metabolite (AM) in human plasma. Tris(2‐carboxyethyl)phosphine (TCEP) was used as a reducing agent to detect the AM as a disulfide‐bonded complex with plasma proteins. Mixtures of TCEP and human plasma were deproteinized with acetonitrile containing 10 ng/mL of clopidogrel‐d4 as an internal standard (IS). The mixtures were separated on a C18 RP column with an isocratic mobile phase consisting of 0.1% formic acid in acetonitrile and water (90:10, v/v) at a flow rate of 0.3 mL/min. Detection and quantification were performed using ESI‐MS. The detector was operated in selected reaction‐monitoring mode at m/z 322.0→211.9 for clopidogrel, m/z 356.1→155.2 for the AM, and m/z 326.0→216.0 for the IS. The linear dynamic range for clopidogrel and its AM were 0.05–20 and 0.5–200 ng/mL, respectively, with correlation coefficients (r) greater than 0.9976. Precision, both intra‐ and interday, was less than 8.26% with an accuracy of 87.6–106%. The validated method was successfully applied to simultaneously analyze clinical samples for clopidogrel and its AM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号