共查询到20条相似文献,搜索用时 0 毫秒
1.
Alex Wendland 《Journal of Graph Theory》2016,83(4):359-371
The Four Color Theorem asserts that the vertices of every plane graph can be properly colored with four colors. Fabrici and Göring conjectured the following stronger statement to also hold: the vertices of every plane graph can be properly colored with the numbers 1, …, 4 in such a way that every face contains a unique vertex colored with the maximal color appearing on that face. They proved that every plane graph has such a coloring with the numbers 1, …, 6. We prove that every plane graph has such a coloring with the numbers 1, …, 5 and we also prove the list variant of the statement for lists of sizes seven. 相似文献
2.
We study backbone colorings, a variation on classical vertex colorings: Given a graph G and a subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex k-coloring of G in which the colors assigned to adjacent vertices in H differ by at least 2. The minimal k∈N for which such a coloring exists is called the backbone chromatic number of G. We show that for a graph G of maximum degree Δ where the backbone graph is a d-degenerated subgraph of G, the backbone chromatic number is at most Δ+d+1 and moreover, in the case when the backbone graph being a matching we prove that the backbone chromatic number is at most Δ+1. We also present examples where these bounds are attained.Finally, the asymptotic behavior of the backbone chromatic number is studied regarding the degrees of G and H. We prove for any sparse graph G that if the maximum degree of a backbone graph is small compared to the maximum degree of G, then the backbone chromatic number is at most . 相似文献
3.
Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree 总被引:3,自引:0,他引:3
A proper [h]-total coloring c of a graph G is a proper total coloring c of G using colors of the set [h]={1,2,...,h}.Letw(u) denote the sum of the color on a vertex u and colors on all the edges incident to u.For each edge uv∈E(G),if w(u)≠w(v),then we say the coloring c distinguishes adjacent vertices by sum and call it a neighbor sum distinguishing [h]-total coloring of G.By tndi(G),we denote the smallest value h in such a coloring of G.In this paper,we obtain that G is a graph with at least two vertices,if mad(G)3,then tndi∑(G)≤k+2 where k=max{Δ(G),5}.It partially con?rms the conjecture proposed by Pil′sniak and Wozniak. 相似文献
4.
It is proved that a planar graph with maximum degree Δ ≥ 11 has total (vertex-edge) chromatic number $Delta; + 1. © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 53–59, 1997 相似文献
5.
Let fd (G) denote the minimum number of edges that have to be added to a graph G to transform it into a graph of diameter at most d. We prove that for any graph G with maximum degree D and n > n0 (D) vertices, f2(G) = n − D − 1 and f3(G) ≥ n − O(D3). For d ≥ 4, fd (G) depends strongly on the actual structure of G, not only on the maximum degree of G. We prove that the maximum of fd (G) over all connected graphs on n vertices is n/⌊d/2 ⌋ − O(1). As a byproduct, we show that for the n‐cycle Cn, fd (Cn) = n/(2⌊d/2 ⌋ − 1) − O(1) for every d and n, improving earlier estimates of Chung and Garey in certain ranges. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 161–172, 2000 相似文献
6.
7.
8.
David Zuckerman 《Journal of Theoretical Probability》1989,2(1):147-157
The motivating problem for this paper is to find the expected covering time of a random walk on a balanced binary tree withn vertices. Previous upper bounds for general graphs ofO(|V| |E|)(1) andO(|V| |E|/d
min)(2) imply an upper bound ofO(n
2). We show an upper bound on general graphs ofO( |E| log |V|), which implies an upper bound ofO(n log2
n). The previous lower bound was (|V| log |V|) for trees.(2) In our main result, we show a lower bound of (|V| (log
d
max |V|)2) for trees, which yields a lower bound of (n log2
n). We also extend our techniques to show an upper bound for general graphs ofO(max{E
Ti} log |V|). 相似文献
9.
Kishore Yadav Satish Varagani Kishore Kothapalli V.Ch. Venkaiah 《Discrete Mathematics》2011,311(5):748
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of graph G. For a family F of graphs, the acyclic chromatic number of F, denoted by a(F), is defined as the maximum a(G) over all the graphs G∈F. In this paper we show that a(F)=8 where F is the family of graphs of maximum degree 5 and give a linear time algorithm to achieve this bound. 相似文献
10.
André Kündgen 《Discrete Mathematics》2008,308(19):4473-4478
11.
Tom Rackham 《Journal of Graph Theory》2011,68(2):129-136
A (k, 1)‐coloring of a graph is a vertex‐coloring with k colors such that each vertex is permitted at most 1 neighbor of the same color. We show that every planar graph has at least cρn distinct (4, 1)‐colorings, where c is constant and ρ≈1.466 satisfies ρ3 = ρ2 + 1. On the other hand for any ε>0, we give examples of planar graphs with fewer than c(? + ε)n distinct (4, 1)‐colorings, where c is constant and . Let γ(S) denote the chromatic number of a surface S. For every surface S except the sphere, we show that there exists a constant c′ = c′(S)>0 such that every graph embeddable in S has at least c′2n distinct (γ(S), 1)‐colorings. © 2010 Wiley Periodicals, Inc. J Graph Theory 28:129‐136, 2011 相似文献
12.
An (r, n)-split coloring of a complete graph is an edge coloring with r colors under which the vertex set is partitionable into r parts so that for each i, part i does not contain Kn in color i. This generalizes the notion of split graphs which correspond to (2, 2)-split colorings. The smallest N for which the complete graph KN has a coloring which is not (r, n)-split is denoted by ƒr(n). Balanced (r,n)-colorings are defined as edge r-colorings of KN such that every subset of [N/r] vertices contains a monochromatic Kn in all colors. Then gr(n) is defined as the smallest N such that KN has a balanced (r, n)-coloring. The definitions imply that fr(n) gr(n). The paper gives estimates and exact values of these functions for various choices of parameters. 相似文献
13.
An edge‐face coloring of a plane graph with edge set E and face set F is a coloring of the elements of E∪F so that adjacent or incident elements receive different colors. Borodin [Discrete Math 128(1–3):21–33, 1994] proved that every plane graph of maximum degree Δ?10 can be edge‐face colored with Δ + 1 colors. We extend Borodin's result to the case where Δ = 9. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:332‐346, 2011 相似文献
14.
Planar graphs with maximum degree Δ ⩾ 8 and without 5- or 6-cycles with chords are proved to be (δ + 1)-totally-colorable.
This work was supported by Natural Science Foundation of Ministry of Education of Zhejiang Province, China (Grant No. 20070441) 相似文献
15.
Suppose G is a graph embedded in Sg with width (also known as edge width) at least 264(2g−1). If P ⊆ V(G) is such that the distance between any two vertices in P is at least 16, then any 5‐coloring of P extends to a 5‐coloring of all of G. We present similar extension theorems for 6‐ and 7‐chromatic toroidal graphs, for 3‐colorable large‐width graphs embedded on Sg with every face even‐sided, and for 4‐colorable large‐width Eulerian triangulations. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 105–116, 2001 相似文献
16.
A k-coloring (not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colors i and j the subgraph induced by the edges whose endpoints have colors i and j is acyclic. We consider some generalized acyclic k-colorings, namely, we require that each color class induces an acyclic or bounded degree graph. Mainly we focus on graphs with maximum degree 5. We prove that any such graph has an acyclic 5-coloring such that each color class induces an acyclic graph with maximum degree at most 4. We prove that the problem of deciding whether a graph G has an acyclic 2-coloring in which each color class induces a graph with maximum degree at most 3 is NP-complete, even for graphs with maximum degree 5. We also give a linear-time algorithm for an acyclic t-improper coloring of any graph with maximum degree d assuming that the number of colors is large enough. 相似文献
17.
18.
Let denote the maximum average degree (over all subgraphs) of G and let χi(G) denote the injective chromatic number of G. We prove that if , then χi(G)≤Δ(G)+1; and if , then χi(G)=Δ(G). Suppose that G is a planar graph with girth g(G) and Δ(G)≥4. We prove that if g(G)≥9, then χi(G)≤Δ(G)+1; similarly, if g(G)≥13, then χi(G)=Δ(G). 相似文献
19.
Given a graph G=(V,E) with strictly positive integer weights ωi on the vertices iV, a k-interval coloring of G is a function I that assigns an interval I(i){1,…,k} of ωi consecutive integers (called colors) to each vertex iV. If two adjacent vertices x and y have common colors, i.e. I(i)∩I(j)≠0/ for an edge [i,j] in G, then the edge [i,j] is said conflicting. A k-interval coloring without conflicting edges is said legal. The interval coloring problem (ICP) is to determine the smallest integer k, called interval chromatic number of G and denoted χint(G), such that there exists a legal k-interval coloring of G. For a fixed integer k, the k-interval graph coloring problem (k-ICP) is to determine a k-interval coloring of G with a minimum number of conflicting edges. The ICP and k-ICP generalize classical vertex coloring problems where a single color has to be assigned to each vertex (i.e., ωi=1 for all vertices iV).Two k-interval colorings I1 and I2 are said equivalent if there is a permutation π of the integers 1,…,k such that ℓI1(i) if and only if π(ℓ)I2(i) for all vertices iV. As for classical vertex coloring, the efficiency of algorithms that solve the ICP or the k-ICP can be increased by avoiding considering equivalent k-interval colorings, assuming that they can be identified very quickly. To this purpose, we define and prove a necessary and sufficient condition for the equivalence of two k-interval colorings. We then show how a simple tabu search algorithm for the k-ICP can possibly be improved by forbidding the visit of equivalent solutions. 相似文献