首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycation is a non‐enzymatic reaction of protein amino and guanidino groups with reducing sugars or dicarbonyl products of their oxidative degradation. Modification of arginine residues by dicarbonyls such as glyoxal and methylglyoxal results in formation of advanced glycation end‐products (AGEs). In mammals, these modifications impact in diabetes mellitus, uremia, atherosclerosis and ageing. However, due to the low abundance of individual AGE‐peptides in enzymatic digests, these species cannot be efficiently detected by LC‐ESI‐MS‐based data‐dependent acquisition (DDA) experiments. Here we report an analytical workflow that overcomes this limitation. We describe fragmentation patterns of synthetic AGE‐peptides and assignment of modification‐specific signals required for unambiguous structure retrieval. Most intense signals were those corresponding to unique fragment ions with m/z 152.1 and 166.1, observed in the tandem mass spectra of peptides, containing glyoxal‐ and methylglyoxal‐derived hydroimidazolone AGEs, respectively. To detect such peptides, specific and sensitive precursor ion scanning methods were established for these signals. Further, these precursor ion scans were incorporated in conventional bottom‐up proteomic approach based on data‐dependent acquisition (DDA) LC‐MS/MS experiments. The method was successfully applied for the analysis of human serum albumin (HSA) and human plasma protein tryptic digest with subsequent structure confirmation by targeted LC‐MS/MS (DDA). Altogether 44 hydroimidazolone‐ and dihydroxyimidazolidine‐derived peptides representing 42 AGE‐modified proteins were identified in plasma digests obtained from type 2 diabetes mellitus (T2DM) patients. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
After (R)‐12‐hydroxystearic acid (HSA) was mixed at 100 °C with the castor oil‐modified poly(ε‐caprolactone) (CO‐PCL) prepared by the ring‐opening polymerization of ε‐caprolactone in the presence of castor oil, the mixture was gradually cooled to room temperature to give a solidified CO‐PCL/HSA composite. The CO‐PCL/HSA sample showed an exothermic peak at around 67–71 °C which was lower than the melting point of HSA (76.8 °C), indicating the formation of mesogenic HSA aggregates. The rheological measurement of the CO‐PCL/HSA revealed the formation of HSA organogel at around 67–55 °C during the cooling process from the melt. Furthermore, the polarized and normal optical microscopic analyses of CO‐PCL/HSA on the cooling stage revealed that anisotropic fibrous materials are formed at around 60 °C and then the fibrous network propagated over the matrix polymer. The flexural modulus and storage modulus of the CO‐PCL/HSA composite increased with increasing HSA content. The CO‐PCL/HSA composite annealed at 60 °C for 2 h on the cooling process had a higher flexural and storage modulus than the sample without annealing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1281–1289, 2010  相似文献   

3.
Solid‐phase extraction was applied for the separation of protein digests obtained from aged human lenses, cataractous human lenses, calf lens proteins in vitro glycated with dehydroascorbic acid and native calf lens proteins. Four fractions were collected after stepwise elution with different solvents. The first fraction contained about 80% of the digested material possessing free amino groups. At the same time, the third and the fourth fractions were enriched in chromophores, fluorophores, and photosensitizing structures that originate mainly from advanced protein glycation. The comparison between the total digest and the fourth fraction based on their UV absorption at 330 nm, intensity of fluorescence (excitation/emission 350/450 nm), and production of singlet oxygen upon UVA irradiation argues that the solid‐phase extraction was capable of concentrating the advanced glycation end‐products about a hundredfold. Thus, this technique is a useful step for separation and concentration of fluorophores, chromophores, and photosensitizers from aged and glycated lens protein digests.  相似文献   

4.
Triacontyl bonded silica (C(30)) material was applied as solid-phase extraction (SPE) sorbent and an SPE-LC-MS method was established for the determination of eight estrogens and their metabolites in water samples. Compared to commercial C(18) SPE cartridge, the performance of C(30) was evaluated in various important SPE conditions, such as sorbent mass, elution solvent and its volume, loading flow rate, and sample loading volume. The results showed a superior performance of C(30)-C(18) by the shorter treatment time and fewer required elution solvent. In the optimum conditions, the results showed good recoveries (80.5-109.4%), excellent linear relationships (0.02-1 ng/mL, except 2-MeO-E(2)), high precisions (lower than 10.0% RSD for both low and high spiked concentration), and low LODs (1-16 ng/L). Method validation using C(30) packed cartridge was also testified with spiked real water samples, including tap water and river water. Satisfy results demonstrated the feasibility of C(30) SPE to the analysis for real environmental waters.  相似文献   

5.
Glycated peptides arising from in vivo digestion of glycated proteins, usually called advanced glycation end (AGE) product peptides, are biologically relevant compounds due to their reactivity towards circulating and tissue proteins. To investigate their structures, in vitro glycation of human serum albumin (HSA) has been performed and followed by enzymatic digestion. Using different MALDI based approaches the digestion products obtained have been compared with those arising from enzymatic digestion of the protein. Results obtained using 2,5-dihydroxybenzoic acid (DHB) indicate this as the most effective matrix, leading to an increase in the coverage of the glycated protein. Off-line microbore liquid chromatography prior to MALDI analysis reveals that 63% of the free amino groups amenable to glycation are modified. In addition, the same approach shows the co-presence of underivatised peptides. This indicates that, regardless of the high glucose concentration employed for HSA incubation, glycation does not go to completion. Tandem mass spectrometric data suggest that the collision induced dissociation of singly charged glycated peptides leads to specific fragmentation pathways related to the condensed glucose molecule. The specific neutral losses derived from the activated glycated peptides can be used as signature for establishing the occurrence of glycation processes.  相似文献   

6.
Sample preparation still remains a great challenge in modern bioanalysis and the interest in new efficient solid phase extraction (SPE) materials still remains high. In this work, hexagonal boron nitride (h-BN) is introduced as a new SPE material for the isolation and enrichment of peptides. The h-BN is isoelectronic and structurally similar to graphite. It has remarkable properties including good thermal conductivity, excellent thermal and chemical stability and a better oxidation resistance than graphite. BN attracts increasing interest because of its wide range of applicability. In the present work, the great potential of h-BN, as a new SPE-material, on the enrichment, preconcentration and desalting of tryptic digest of model proteins is demonstrated. A special attention was dedicated to the efficient enrichment of hydrophilic phosphopeptides. Two elution protocols were developed for the enrichment of peptides compatible for subsequent MALDI-MS and ESI-MS analysis. In addition, the recoveries of 5 peptides and 3 phosphopeptides with wide range of pI values utilizing h-BN materials with different surface areas were investigated. 84–106% recovery rate could be achieved using h-BN materials. The results were compared with those obtained using graphite and silica C18 under the same elution conditions, and lower recoveries were obtained. In addition, h-BN was found to have a capability of protein depletion, which is requisite for the peptide profiling.  相似文献   

7.
In this study, we investigated the performance of several commercial sorbents (Sep‐pack® C18, tC18, C8 and tC2, Oasis® HLB, Isolute® ENV+, Strata?‐X and Oasis® MCX) for the determination of opioid peptides by solid‐phase extraction coupled on‐line to capillary electrophoresis (SPE‐CE). First, standard solutions were analyzed in order to achieve the lowest LOD and the best electrophoretic separations using UV detection. The best results were obtained using C18, C8 and tC2 sorbents, which were examined for the analysis of spiked human plasma samples. A double‐step sample clean‐up pretreatment, which consisted of precipitation with acetonitrile and filtration, was needed to prevent saturation of the on‐line SPE microcartridge. The filtration step was critical to obtain optimum analyte recovery and to clean up the sample matrix. A range of centrifugal filters and filtration conditions were tested and the recoveries of the sample pretreatment were evaluated by CE‐ESI‐MS. The LODs attained through SPE‐CE‐UV were approximately ten‐fold better with C18 than with C8 and tC2. The 0.1 μg/mL LODs achieved by C18‐SPE‐CE‐UV were further improved until we could detect 1 ng/mL concentrations of opioid peptides in plasma samples by C18‐SPE‐CE‐ESI‐MS, due to the outstanding selectivity of the MS detection.  相似文献   

8.
A new method for glyphosate residue determination in apple has been developed. A SPE cartridge was used to clean up the samples before derivatization. Glyphosate was derivatized with 4‐chloro‐3,5‐dinitrobenzotrifluoride (CNBF) and quantified by reverse ion‐pair liquid chromatography using cetyltrimethylammonium bromide (CTAB) as ion‐pair reagent. In pH 9.5 H3BO3–Na2B4O7 medium, the reaction of glyphosate with CNBF was complete after 30 min at 60°C. The stability of the derivative on exposure to light at room temperature in methanol–water was demonstrated. The labeled glyphosate was separated on a Kromasil C18 column (250×4.6 mm, 5 μm) at room temperature and UV detection was applied at 360 nm. Separation was achieved within 15 min in gradient elution mode. The correlation coefficient for the method was 0.9998 at concentrations ranging from 0.1 to 50 μg/g. The calculated recoveries for glyphosate in apple were from 86.00 to 99.55%, and the relative standard deviations (n = 6) were from 1.43 to 6.32. The limit of detection was 0.01 μg/g for glyphosate in apple.  相似文献   

9.
Many peptides self‐assemble to form amyloid fibrils. We previously explored the sequence propensity to form amyloid using variants of a designed peptide with sequence KFFEAAAKKFFE. These variant peptides form highly stable amyloid fibrils with varied lateral assembly and are ideal to template further assembly of non‐proteinaceous material. Herein, we show that the fibrils formed by peptide variants can be coated with a layer of silica to produce silica nanowires using tetraethyl‐orthosilicate. The resulting nanowires were characterized using electron microscopy (TEM), X‐ray fiber diffraction, FTIR and cross‐section EM to reveal a nanostructure with peptidic core. Lysine residues play a role in templating the formation of silica on the fibril surface and, using this library of peptides, we have explored the contributions of lysine as well as arginine to silica templating, and find that sequence plays an important role in determining the physical nature and structure of the resulting nanowires.  相似文献   

10.
Analytical procedures of complex mixtures frequently involve their initial pre‐fractionation to make the analysis easier or possible. Recently, SPE is frequently applied for this purpose. This article discusses the possibility of essential oil's fractionation using SPE with octadecyl modified silica. The presented results show that developed SPE with C‐18 sorbent allows for easy and total isolation (100% recovery) of low‐molecular oxygen compounds from the remaining compounds, for which the recovery exceeds 95%. The obtained recoveries are satisfactory for preliminary separation of essential oils for analytical and preparative purposes.  相似文献   

11.
Wan H  Yan J  Yu L  Sheng Q  Zhang X  Xue X  Li X  Liang X 《The Analyst》2011,136(21):4422-4430
Characterization of protein glycosylation requires highly specific methods for the enrichment of glycopeptides because of their sub-stoichiometric glycosylation-site occupancy. The hydrophilic affinity based strategy has attracted more attention, owing to its broad glycan specificity, good reproducibility, and compatibility with mass spectrometric (MS) analysis. Several polar matrices have emerged for hydrophilic interaction chromatography (HILIC) approaches, including sepharose, cellulose, ZIC-HILIC and titania. Here, we present the solid-phase extraction (SPE) utility of zirconia coated mesoporous silica (ZrO(2)/MPS) microspheres for glycopeptide isolation prior to MS analysis. The high specificity of this SPE approach was demonstrated by the enrichment of glycopeptides from the digests of model glycoproteins in HILIC mode. ZrO(2)/MPS microspheres show superior selectivity and glycosylation heterogeneity coverage for glycopeptide enrichment to conventional sepharose. Furthermore, digested mixtures of the phosphoprotein α-casein and IgG were also treated with ZrO(2)/MPS HILIC SPE materials, which exhibited that glycopeptides could be effectively enriched with interference from phosphorylated peptides.  相似文献   

12.
Fritless SPE on‐line coupled to CE with UV and MS detection (SPE‐CE‐UV and SPE‐CE‐MS) was evaluated for the analysis of opioid peptides. A microcartridge of 150 μm id was packed with a C18 sorbent (particle size > 50 μm), which was retained between a short inlet capillary and a separation capillary (50 μm id). Several experimental parameters were optimized by SPE‐CE‐UV using solutions of dynorphin A (DynA), endomorphin 1 (End1), and methionine‐enkephaline (Met). A microcartridge length of 4 mm was selected, sample was loaded for 10 min at 930 mbar and the retained peptides were eluted with 67 nL of an acidic hydro‐organic solution. Using SPE‐CE‐MS, peak area and migration time repeatabilities for the three opioid peptides were 12–27% and 4–5%, respectively. SPE recovery was lower for the less hydrophobic DynA (22%) than for End1 (66%) and Met (78%) and linearity was satisfactory in all cases between 5 and 60 ng/mL. The LODs varied between 0.5 and 1.0 ng/mL which represent an enhancement of two orders of magnitude when compared with CE‐MS. Cerebrospinal fluid (CSF) samples spiked with the opioid peptides were analyzed to demonstrate the applicability to biological samples. Peak area and migration time repeatabilities were similar to the standard solutions and the opioid peptides could be detected down to 1.0 ng/mL.  相似文献   

13.
A rapid dispersive micro‐solid phase extraction (D‐μ‐SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM‐41 was used as sorbent in d ‐μ‐SPE of the azole compounds from biological fluids. Important D‐μ‐SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB‐C18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile–0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v /v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1–10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra‐ and inter‐day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3–114.8%. The MCM‐41‐D‐μ‐SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis.  相似文献   

14.
Protein precipitation and centrifugal filtration are well‐established methods for concentrating and purifying peptides with a low relative molecular mass (Mr) from human blood plasma before proteomic and peptidomic studies using high‐performance separation techniques, but there is little information on peptide recoveries. Here, we evaluate acetonitrile precipitation followed by a range of centrifugal filtration conditions for the analysis of low Mr peptides in human blood plasma before CE–MS and SPE coupled online to CE–MS. Three opioid peptides were used as model compounds, that is, dynorphin A 1–7, endomorphin 1, and methionine enkephalin and 3, 10, and 30 K Mr cut‐off cellulose acetate filters (Amicon® Ultra‐0.5) and 10 K Mr cut‐off polyethersulfone filters (Vivaspin® 500) were studied. Unexpectedly, recoveries and repeatability were only optimum after passivating the 10 K Mr cut‐off cellulose acetate filters with PEG to avoid peptide adsorption on the inner walls of the plastic sample reservoir.  相似文献   

15.
With different scales of chirality, chiral materials have various particular properties and potential applications in many fields. Peptides are the fundamental building units of biological systems, and a variety of ordered functional nanostructures are produced through self‐assembly and biomineralization of peptides in nature. This Personal Account describes chiral silica materials fabricated by using amphiphilic peptides as building blocks. Three particular biomineralization approaches are described based on different kinds of geometry of amphiphilic peptides: the influence of the specific amino acid proline in the peptide sequence, the hydrophilicity of amphiphilic peptides, and different kinds of hydrophobic tails in amphiphilic peptides. These strategies are useful for designing peptides toward the bottom‐up synthesis of nanomaterials as well as improving the understanding of the mechanism of peptide self‐assembly.  相似文献   

16.
Open‐tubular CEC (OT‐CEC) with a new stationary phase, salophene–lanthanide–Zn2+ complex, has been applied to the separation of tryptic peptides of native BSA and BSA glycated by glucose and ribose. Glycation of proteins (non‐enzymatic modification by sugars) significantly affects their properties and it is of great importance from a physiological point of view. Separation of tryptic peptides of glycated BSA by CZE was poor because of their strong adsorption to the bare fused silica capillary. An improved separation of tryptic peptides of both native and glycated BSA was achieved by OT‐CEC in the fused silica capillary non‐covalently coated with salophene–lanthanide–Zn2+ complex, which suppressed the adsorption of peptides to the capillary and via specific interactions with some (glyco)peptides enhanced selectivity of the separation. Significant differences have been found in OT‐CEC analyses of tryptic hydrolysates of native and glycated BSA. In OT‐CEC‐UV profile of tryptic peptides of native BSA, 44 peaks could be resolved, whereas a reduced number of 38 peaks were observed in the profile of tryptic peptides of glucose‐glycated BSA and only 30 peaks were found in the case of ribose‐glycated BSA. The developed OT‐CEC can be potentially used for monitoring of protein glycation.  相似文献   

17.
The SPE of leukotrienes and eicosatetraenoic acids using anion exchange materials was compared to the classical extraction with C18 columns. A silica‐based strong anion exchanger, a polymer‐based weak anion exchanger, and a polymer‐based mixed‐mode strong anion exchanger were studied. All anion exchange materials displayed a higher recovery of the analytes with values between 70 and 90% when extracting standard solutions and analyzing by HPLC. The effect was less pronounced for the analysis of the compounds in incubations of polymorphonuclear leukocytes. Using MEKC with head‐column field‐amplified sample stacking for analyte quantification, much lower values of the peak areas were observed compared to the determination of the recovery of the analytes by HPLC. Using MEKC analysis, the highest values were found for the polymer‐based weak anion exchange material, while values below 10% were found for the polymer‐based mixed mode strong anion exchanger. This could be attributed to the presence of electrolytes in the eluates that compromised the stacking efficiency. The extent of residual electrolytes depended on the SPE protocol, resulting in large differences of the amount of analyte determined by MEKC when applying head‐column field‐amplified sample stacking for online analyte concentration.  相似文献   

18.
m‐Cresol‐imprinted silica nanoparticles coated with N‐propylsilylmorpholine‐4‐carboxamide have been developed that contain specific pockets for the selective uptake of m‐cresol. Silica nanoparticles were synthesized by a sol–gel process followed by functionalization of their surface with N‐propylsilylmorpholine‐4‐carboxamide. The formation of m‐cresol‐imprinted silica nanoparticles was confirmed by UV‐Vis spectrophotometry, infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. Electron microscopic studies revealed the formation of monodispersed imprinted silica nanoparticles with spherical shape and an average size of 83 nm. The developed nanoparticles were filled in a syringe and used for the extraction of m‐cresol from aqueous samples followed by quantification using high‐performance liquid chromatography with diode array detection. Various adsorption experiments showed that developed m‐cresol‐imprinted silica nanoparticles exhibited a high adsorption capacity and selectivity and offered a fast kinetics for rebinding m‐cresol. The chromatographic quantification was achieved using mobile phase consisting of acetonitrile/water (70:30 v/v) at an isocratic flow rate of 1.0 mL/min using a reversed‐phase C18 column and detection at λmax = 275 nm. The limits of detection and quantification were 1.86 and 22.32 ng/mL, respectively, for the developed method. The percent recoveries ranged from 96.66–103.33% in the spiked samples. This combination of this nanotechnique with molecular imprinting was proved as a reliable, sensitive and selective method for determining the target from synthetic and real samples.  相似文献   

19.
Protein glycation is the non‐enzymatic condensation of sugars with proteins. Although commonly occurring in both the therapeutic and food/beverage industries, protein glycation has not been the focus of many proteomic investigations. This study aims to establish a reliable mass spectrometric method for screening large tandem mass spectrometric (MSMS) datasets for protein glycation with glucose, lactose and maltose. Control experiments using a standard peptide containing a single glycation site led to the discovery of characteristic neutral loss fragmentation patterns in MSMS analysis for glucose, lactose and maltose condensed with peptides. Valid in both tandem time‐of‐flight (TOFTOF) and quadrupole ion trap time‐of‐flight matrix‐assisted laser desorption/ionization (QIT TOF MALDI) mass spectrometers, these neutral loss signatures were then applied to elucidation of modified peptides from a complex human serum albumin (HSA) digest glycated with each of the proposed sugars. Screening of these large datasets was made possible by specifically designed software solutions that enable the input of detailed user‐defined post‐translational modifications that are not included in the universally available databases such as Unimod. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
We report herein the glycation sites in a vaccine candidate for cholera formed by conjugation of the synthetic hexasaccharide fragment of the O‐specific polysaccharide of Vibrio cholerae, serotype Ogawa, to the recombinant tetanus toxin C‐fragment (rTT–Hc) carrier. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of the vaccine revealed that it is composed of a mixture of neoglycoconjugates with carbohydrate : protein ratios of 1.9 : 1, 3.0 : 1, 4.0 : 1, 4.9 : 1, 5.9 : 1, 6.9 : 1, 7.9 : 1 and 9.1 : 1. Liquid chromatography tandem mass spectrometry (LC‐MS/MS) analysis of the tryptic and GluC V8 digests allowed identification of 12 glycation sites in the carbohydrate–protein neoglycoconjugate vaccine. The glycation sites are located exclusively on lysine (Lys) residues and are listed as follows: Lys 22, Lys 61, Lys 145, Lys 239, Lys 278, Lys 318, Lys 331, Lys 353, Lys 378, Lys 389, Lys 396 and Lys 437. Based on the 3‐D representation of the rTT–Hc protein, all the glycation sites correspond to lysines located at the outer surface of the protein. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号