首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, a new extraction method based on a three–phase system, liquid–liquid–liquid extraction, followed by dispersive liquid–liquid microextraction has been developed and validated for the extraction and preconcentration of three commonly prescribed tricyclic antidepressant drugs – amitriptyline, imipramine, and clomipramine – in human plasma prior to their analysis by gas chromatography–flame ionization detection. The three phases were an aqueous phase (plasma), acetonitrile and n–hexane. The extraction mechanism was based on the different affinities of components of the biological sample (lipids, fatty acids, pharmaceuticals, inorganic ions, etc.) toward each of the phases. This provided high selectivity toward the analytes since most interferences were transferred into n–hexane. In this procedure, a homogeneous solution of the aqueous phase (plasma) and acetonitrile (water–soluble extraction solvent) was broken by adding sodium sulfate (as a phase separating agent) and the analytes were extracted into the fine droplets of the formed acetonitrile. Next, acetonitrile phase was mixed with 1,2–dibromoethane (as a preconcentration solvent at microliter level) and then the microextraction procedure mentioned above was performed for further enrichment of the analytes. Under the optimum extraction conditions, limits of detection and lower limits of quantification for the analytes were obtained in the ranges of 0.001–0.003 and 0.003–0.010 μg mL−1, respectively. The obtained extraction recoveries were in the range of 79–98%. Intra– and inter–day precisions were < 7.5%. The validated method was successfully applied for determination of the selected drugs in human plasma samples obtained from the patients who received them.  相似文献   

2.
A simple, rapid, and efficient method of ultrasonic nebulization extraction assisted dispersive liquid–liquid microextraction was developed for the simultaneous determination of six parabens in cosmetic products. The analysis was carried out by gas chromatography. Water was used as the dispersive solvent instead of traditional organic disperser. The experimental factors affecting the extraction yield, such as the extraction solvent and volume, extraction time, dispersive solvent and volume, ionic strength, and centrifuging condition were studied and optimized in detail. The limit of detections for the target analytes were in the range of 2.0–9.5 μg/g. Good linear ranges were obtained with the coefficients ranging from 0.9934 to 0.9969. The proposed method was successfully applied to the analysis of six parabens in 16 cosmetic products. The recoveries of the target analytes in real samples ranged from 81.9 to 108.7%, and the relative standard deviations were <5.3%.  相似文献   

3.
For the first time, the low‐density solvent‐based vortex‐assisted surfactant‐enhanced emulsification liquid–liquid microextraction, followed by GC‐flame photometric detection has been developed for the determination of eight organophosphorus pesticides in aqueous samples. A small volume of organic extraction solvent (toluene) was dispersed into the aqueous samples by the assistance of surfactant and vortex agitator. The extraction was performed in a special disposable polyethylene pipette, allowing using the reagents with lower density than water as extraction solvents. The influence parameters were systemically investigated and optimized: toluene (30 μL) and Triton X‐100 (0.2 mmol/L) were used as the extraction solvent and the surfactant, respectively, and the extraction was performed for 1 min under room temperature without adding sodium chloride. Under the optimum conditions, the validation parameters such as the RSD (n = 6; 2.1–11.3%), LOD (0.005 and 0.05 μg/L), and linear range (0.1–50.0 μg/L with correlation coefficients (0.9958–0.9992) showed the method was satisfying. The proposed method has been successfully applied to the determination of the organophosphorus pesticides in real samples with recoveries between 82.8 and 100.2%.  相似文献   

4.
A method combining accelerated solvent extraction with dispersive liquid–liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m‐cresol, 2,4‐dichlorophenol, and 2,4,6‐trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid–liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid–liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1–3080 ng/g), low limits of detection (0.06–1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9–110%. These findings indicate that accelerated solvent extraction with dispersive liquid–liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples.  相似文献   

5.
The present study describes a microextraction and determination method for analyzing residual solvents in pharmaceutical products using dynamic headspace–liquid phase microextraction technique followed by gas chromatography–flame ionization detection. In this method dimethyl sulfoxide (μL level) placed into a GC liner‐shaped extraction vessel is used as a collection/extraction solvent. Then the liner is exposed to the headspace of a vial containing the sample solution. The effect of different parameters influencing the microextraction procedure including collection/extraction solvent type and its volume, ionic strength, extraction time, extraction temperature and concentration of NaOH solution used in dissolving the studied pharmaceuticals are investigated and optimized. Under the optimum extraction conditions, the method showed wide linear ranges between 0.5 and 5000 mg L−1. The other analytical parameters were obtained in the following ranges: enrichment factors 240–327, extraction recoveries 72–98% and limits of detection 0.1–0.8 mg L−1 in solution and 0.6–3.2 μg g−1 in solid. Relative standard deviations for the extraction of 100 mg L−1 of each analyte were obtained in the ranges of 4–7 and 5–8% for intra ‐ day (n = 6) and inter ‐ day (n = 4) respectively. Finally the target analytes were determined in different samples such as erythromycin, azithromycin, cefalexin, amoxicillin and co‐amoxiclav by the proposed method.  相似文献   

6.
A simple, rapid, sensitive, and environmentally friendly method, based on modified dispersive liquid–liquid microextraction coupled with high‐performance liquid chromatography was developed for the simultaneous determination of five biogenic amines in fermented food samples. Biogenic amines were derivatized with 9‐fluorenylmethyl chloroformate, extracted by vortex‐assisted surfactant‐enhanced emulsification liquid–liquid microextraction, and then analyzed by high‐performance liquid chromatography. Five biogenic amine compounds were separated within 30 min using a C18 column and gradient elution with acetonitrile and 1% acetic acid. Factors influencing the derivatization and extraction efficiency such as type and volume of extraction solvent, type, and concentration of surfactant, pH, salt addition, and vortex time were optimized. Under the optimum conditions, the method provided the enrichment factors in the range of 161–553. Good linearity was obtained from 0.002–0.5 mg/L for cadaverine and tyramine, 0.003–1 mg/L for tryptamine and histamine, and 0.005–1 mg/L for spermidine with coefficient of determination (R2) > 0.992. The limits of detection ranged from 0.0010 to 0.0026 mg/L. The proposed method was successfully applied to analysis of biogenic amines in fermented foods such as fermented fish (plaa‐som), wine and beer where good recoveries were obtained in the range of 83.2–112.5%  相似文献   

7.
A simple, rapid, and sensitive method based on dispersive liquid–liquid microextraction combined with HPLC‐UV detection applied for the quantification of chlordiazepoxide in some real samples. The effect of different extraction conditions on the extraction efficiency of the chlordiazepoxide drug was investigated and optimized using central composite design as a conventional efficient tool. Optimum extraction condition values of variables were set as 210 μL chloroform, 1.8 mL methanol, 1.0 min extraction time, 5.0 min centrifugation at 5000 rpm min?1, neutral pH, 7.0% w/v NaCl. The separation was reached in less than 8.0 min using a C18 column using isocratic binary mobile phase (acetonitrile/water (60:40, v/v)) with flow rate of 1.0 mL min?1. The linear response (r2 > 0.998) was achieved in the range of 0.005–10 μg mL?1 with detection limit 0.0005 μg mL?1. The applicability of this method for simultaneous extraction and determination of chlordiazepoxide in four different matrices (water, urine, plasma, and chlordiazepoxide tablet) were investigated using standard addition method. Average recoveries at two spiking levels were over the range of 91.3–102.5% with RSD < 5.0% (n = 3). The obtained results show that dispersive liquid–liquid microextraction combined with HPLC‐UV is a fast and simple method for the determination of chlordiazepoxide in real samples.  相似文献   

8.
A new simple and rapid pretreatment method for simultaneous determination of 19 sulfonamides in pork samples was developed through combining the QuEChERS method with dispersive liquid–liquid microextraction followed by ultra‐high performance liquid chromatography with tandem mass spectrometry. The sample preparation involves extraction/partitioning with QuEChERS method followed by dispersive liquid–liquid microextraction using tetrachloroethane as extractive solvent and the acetonitrile extract as dispersive solvent that obtained by QuEChERS. The enriched tetrachloroethane organic phase by dispersive liquid–liquid microextraction was evaporated, reconstituted with 100 μL acetonitrile/water (1:9 v/v) and injected into an ultra‐high performance liquid chromatography with a mobile phase composed of acetonitrile and 0.1% v/v formic acid under gradient elution and separated using a BHE C18 column. Various parameters affecting the extraction efficiency were investigated. Matrix‐matched calibration curves were established. Good linear relationships were obtained for all analytes in a range of 2.0–100 μg/kg and the limits of detection were 0.04–0.49 μg/kg. Average recoveries at three spiking levels were in the range of 78.3–106.1% with relative standard deviations less than 12.7% (n = 6). The developed method was successfully applied to determine sulfonamide residues in pork samples.  相似文献   

9.
Optimization of alcoholic‐assisted dispersive liquid–liquid microextraction of pentachlorophenol (PCP) and determination of it with high‐performance liquid chromatography (UV‐Vis detection) was investigated. A Plackett‐Burman design and a central composite design were applied to evaluate the alcoholic‐assisted dispersive liquid–liquid microextraction procedure. The effect of seven parameters on extraction efficiency was investigated. The factor studied were type and volume of extraction and dispersive solvents, amount of salt, and agitation time. According to Plackett‐Burman design results, the effective parameters were type and volume of extraction solvent and agitation time. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 170‐μL 1‐octanol and 5‐min agitation time. The enrichment factor of PCP was 242 with limits of detection of 0.04 μg L?1. The linearity was 0.1–100 μg L?1 and the extraction recovery was 92.7%. RSD for intra and inter day of extraction of PCP were 4.2% and 7.8%, respectively for five measurements. The developed method was successfully applied for the determination of PCP in environmental water samples.  相似文献   

10.
A dispersive liquid–liquid microextraction procedure coupled with GC‐MS is described for preconcentration and determination of banned aromatic amines from textile samples. Experimental conditions affecting the microextraction procedure were optimized. A mixture of 30 μL chlorobenzene (extraction solvent) and 800 μL ACN (disperser solvent), 5 min extraction time, and 5 mL aqueous sample volume were chosen for the best extraction efficiency by the proposed procedure. Satisfactory linearity (with correlation coefficients >0.9962) and repeatability (<9.78%) were obtained for all 20 aromatic amines; detection limits attained were much lower than the standardized liquid–liquid method. The proposed method has advantages of being quicker and easier to operate, and lower consumption of organic solvent.  相似文献   

11.
A method was developed to determine 2‐mercaptobenzimidazole in water and urine samples using dispersive liquid–liquid microextraction technique coupled with ultraviolet–visible spectrophotometry. It was essential to peruse the effect of all parameters that can likely influence the performance of extraction. The influence of parameters, such as dispersive and extraction solvent volume and sample volume, on dispersive liquid–liquid microextraction was studied. The optimization was carried out by the central composite design method. The central composite design optimization method resulted in 1.10 mL dispersive solvent, 138.46 μL extraction solvent, and 4.46 mL sample volume. Under the optimal terms, the calibration curve was linear over the range of 0.003–0.18 and 0.007–0.18 μg/mL in water and urine samples, respectively. The limit of detection and quantification of the proposed approach for 2‐mercaptobenzimidazole were 0.013 and 0.044 μg/mL in water samples and 0.016 and 0.052 μg/mL in urine samples, respectively. The method was successfully applied to determination of 2‐mercaptobenzimidazole in urine and water samples.  相似文献   

12.
A novel method has been developed for the analysis of zearalenone in maize products by vortex‐assisted ionic‐liquid‐based dispersive liquid–liquid microextraction combined with HPLC and fluorescence detection. Maize samples were extracted with methanol/water (80:20, v/v) and the extraction solution was then used as the dispersive solvent in the microextraction procedure. The analyte was rapidly transmitted to a small volume of ionic liquid and was determined by HPLC. Various parameters affecting the recovery of the mycotoxin were investigated, such as the type and volume of the extraction solvent, the type and volume of the dispersive solvent, the pH of the aqueous phase, the salt addition, and the time of vortex and centrifugation. Under the optimal experimental conditions, a good linearity of the analyte was obtained in the range of 1.0–1000.0 μg/L with the correlation coefficient of 0.9998. The limit of detection (S/N = 3) and quantification (S/N = 10) were 0.3 and 1.0 μg/kg, and the mean recoveries ranged from 83.5 to 94.9%, with a relative standard deviation less than 5.0%. The proposed method was demonstrated to be simple, cheap, quick, and highly selective and was successfully applied to the determination of zearalenone in maize products.  相似文献   

13.
A method was established for the determination of desipramine in biological samples using liquid–liquid–liquid microextraction followed by in‐syringe derivatization and gas chromatography–nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n‐Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2–20 μg/L (r2 = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine.  相似文献   

14.
A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut‐glass dropper was designed and applied to collect the floating extraction drop in liquid–liquid microextraction when low‐density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low‐density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex‐assisted liquid–liquid microextraction was employed to investigate the usefulness of the apparatus. High‐performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r2 = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient.  相似文献   

15.
Dispersive liquid–liquid microextraction method was developed for the determination of the amount of phthalate esters in bottled drinking water samples and dispersive liquid–liquid microextraction samples were analyzed by GC–MS. Various experimental conditions influencing the extraction were optimized. Under the optimized conditions, very good linearity was observed for all analytes in a range between 0.05 and 150 μg/L with coefficient of determination (R2) between 0.995 and 0.999. The LODs based on S/N = 3 were 0.005–0.22 μg/L. The reproducibility of dispersive liquid–liquid microextraction was evaluated. The RSDs were 1.3–5.2% (n = 3). The concentrations of phthalates were determined in bottled samples available in half shell. To understand the leaching profile of these phthalates from bottled water, bottles were exposed to direct sunlight during summer (temperature from 34–57°C) and sampled at different intervals. Result showed that the proposed dispersive liquid–liquid microextraction is suitable for rapid determination of phthalates in bottled water and di‐n‐butyl, butyl benzyl, and bis‐2‐ethylhexyl phthalate compounds leaching from bottles up to 36 h. Thereafter, degradation of phthalates was observed.  相似文献   

16.
A simple, efficient, and rapid sample preparation method based on aeration‐assisted homogeneous liquid–liquid microextraction was developed for determination of curcumin in food samples by high‐performance liquid chromatography. The centrifuge step has been eliminated in this procedure. The effects of some variables, such as pH, volume of extraction solvent, extraction time, and salt effect, were studied through a Box–Behnken design method. Under the optimum conditions, calibration curves of curcumin were linear in the range of 0.08‐4000 μg/mL with R2 = 0.997. Limit of detection and relative standard deviation were 0.019 μg/mL and 3.01%, respectively. The preconcentration factor achieved was 166. The proposed method was successfully applied to determination of curcumin in various food samples.  相似文献   

17.
A novel procedure of sample preparation combined with high‐performance liquid chromatography with diode array detection is introduced for the analysis of highly chlorinated phenols (trichlorophenols, tetrachlorophenols, and pentachlorophenol) in wine. The main features of the proposed method are (i) low‐toxicity diethyl carbonate as extraction solvent to selectively extract the analytes without matrix effect, (ii) the combination of salting‐out assisted liquid–liquid extraction and dispersive liquid–liquid microextraction to achieve an enrichment factor of 334–361, and (iii) the extract is analyzed by high‐performance liquid chromatography to avoid derivatization. Under the optimum conditions, correlation coefficients (r) were >0.997 for calibration curves in the range 1–80 ng/mL, detection limits and quantification limits ranged from 0.19 to 0.67 and 0.63 to 2.23 ng/mL, respectively, and relative standard deviation was <8%. The method was applied for the determination of chlorophenols in real wines, with recovery rates in the range 82–104%.  相似文献   

18.
In this paper, solid‐phase extraction (SPE) in combination with dispersive liquid–liquid microextraction (DLLME) has been developed as a sample pretreatment method with high enrichment factors for the sensitive determination of amide herbicides in water samples. In SPE–DLLME, amide herbicides were adsorbed quantitatively from a large volume of aqueous samples (100 mL) onto a multiwalled carbon nanotube adsorbent (100 mg). After elution of the target compounds from the adsorbent with acetone, the DLLME technique was performed on the resulting solution. Finally, the analytes in the extraction solvent were determined by gas chromatography–mass spectrometry. Some important extraction parameters, such as flow rate of sample, breakthrough volume, sample pH, type and volume of the elution solvent, as well as salt addition, were studied and optimized in detail. Under optimum conditions, high enrichment factors ranging from 6593 to 7873 were achieved in less than 10 min. There was linearity over the range of 0.01–10 μg/L with relative standard deviations of 2.6–8.7%. The limits of detection ranged from 0.002 to 0.006 μg/L. The proposed method was used for the analysis of water samples, and satisfactory results were achieved.  相似文献   

19.
A novel, simple, and rapid reversed‐phase vortex‐assisted liquid–liquid microextraction coupled with high‐performance liquid chromatography has been introduced for the extraction, clean‐up, and preconcentration of amygdalin in oil and kernel samples. In this technique, deionized water was used as the extracting solvent. Unlike the reversed‐phase dispersive liquid–liquid microextraction, dispersive solvent was eliminated in the proposed method. Various parameters that affected the extraction efficiency, such as extracting solvent volume and its pH, vortex, and centrifuging times were evaluated and optimized. The calibration curve shows good linearity (r2 = 0.9955) and precision (RSD < 5.2%) in the range of 0.07–20 μg/mL. The limit of detection and limit of quantitation were 0.02 and 0.07 μg/mL, respectively. The recoveries were in the range of 96.0–102.0% with relative standard deviation values ranging from 4.0 to 5.1%. Unlike the conventional extraction methods for plant extracts, no evaporative and re‐solubilizing operations were needed in the proposed technique.  相似文献   

20.
This paper presents a fast and simple method for the extraction, preconcentration and determination of fluvoxamine, nortriptyline and maprotiline in urine using simultaneous derivatization and temperature‐assisted dispersive liquid–liquid microextraction (TA‐DLLME) followed by gas chromatography–flame ionization detection (GC‐FID). An appropriate mixture of dimethylformamide (disperser solvent), 1,1,2,2‐tetrachloroethane (extraction solvent) and acetic anhydride (derivatization agent) was rapidly injected into the heated sample. Then the solution was cooled to room temperature and cloudy solution formed was centrifuged. Finally a portion of the sedimented phase was injected into the GC‐FID. The effect of several factors affecting the performance of the method, including the selection of suitable extraction and disperser solvents and their volumes, volume of derivatization agent, temperature, salt addition, pH and centrifugation time and speed were investigated and optimized. Figures of merit of the proposed method, such as linearity (r2 > 0.993), enrichment factors (820–1070), limits of detection (2–4 ng mL?1) and quantification (8–12 ng mL?1), and relative standard deviations (3–6%) for both intraday and interday precisions (concentration = 50 ng mL?1) were satisfactory for determination of the selected antidepressants. Finally the method was successfully applied to determine the target pharmaceuticals in urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号