首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel dispersive liquid‐phase microextraction method without dispersive solvents has been developed for the enrichment and sensitive determination of triclosan and triclocarban in environmental water samples prior to HPLC‐ESI‐MS/MS. This method used only green solvent 1‐hexyl‐3‐methylimidazolium hexafluorophosphate as extraction solvent and overcame the demerits of the use of toxic solvents and the instability of the suspending drop in single drop liquid‐phase microextraction. Important factors that may influence the enrichment efficiencies, such as volume of ionic liquid, pH of solutions, extraction time, centrifuging time and temperature, were systematically investigated and optimized. Under optimum conditions, linearity of the method was observed in the range of 0.1–20 μg/L for triclocarban and 0.5–100 μg/L for triclosan, respectively, with adequate correlation coefficients (R>0.9990). The proposed method has been found to have excellent detection sensitivity with LODs of 0.04 and 0.3 μg/L, and precisions of 4.7 and 6.0% (RSDs, n=5) for triclocarban and triclosan, respectively. This method has been successfully applied to analyze real water samples and satisfactory results were achieved.  相似文献   

2.
A sensitive and efficient analytical method for triclosan (TCS) determination in water, which involves enrichment with bamboo‐activated charcoal and detection with HPLC‐ESI‐MS, was developed. The influence of several operational parameters, including the eluant and its volume, the flow rate, the volume andacidity of the sample, and the amount of bamboo‐activated charcoal, were investigated and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.02–20 μg/L, with correlation coefficients (r2) >0.9990. The limit of detection was 0.002 μg/L based on the ratio of chromatographic signal to baseline noise (S/N = 3). The spiked recoveries of TCS in real water samples were achieved in the range of 97.6–112.5%. The proposed method was applied to analyze TCS in real aqueous samples. All the surface water samples collected in Xiaoqing River had detectable levels of TCS with concentrations of 42–197 ng/L.  相似文献   

3.
This paper presents a selective and efficient sample preparation procedure for NLLGLIEAK, signature peptide for the small cell lung cancer (SCLC) biomarker ProGRP, in human serum. The procedure is based on immuno‐capture of ProGRP in 96‐wells microtiter plates coated with the mAb E146. After immuno‐capture and thorough rinse, trypsin was added for in‐well digestion. Subsequently the signature peptide was enriched by SPE and determined by LC‐MS/MS. Various steps in the procedure were optimized to achieve a low LOD such as dilution of sample, tryptic digestion, and SPE cleanup and peptide enrichment conditions. A single quadropole MS was used during optimization of the method. A triple quadropole MS was used in the method evaluation in order to improve sensitivity. The evaluation showed good repeatability (RSD, 11.9–17.5%), accuracy (3.0–6.6%), and linearity (r2 = 0.995) in the tested range (0.5–50 ng/mL). LOD and LOQ were in the pg/mL area (0.20 and 0.33 ng/mL, respectively), enabling the determination of clinically relevant concentrations. The method was applied to two patient samples and showed good agreement with an established immunological reference method. The final method was compared to a previous published LC‐MS method for the determination of ProGRP in serum based on protein precipitation and online sample cleanup. Both showed acceptable method performance, however, the immuno‐capture LC‐MS method was superior with respect to sensitivity. This illustrates the large potential of immuno‐capture sample preparation prior to LC‐MS in protein biomarker quantification.  相似文献   

4.
A headspace solid‐phase microextraction method coupled to GC–MS was successfully developed for the trace determination of formaldehyde in veterinary bacterial and human vaccines, and diphtheria–tetanus antigen. The formaldehyde was derivatized by means of the Hantzsch reaction prior to extraction and subsequent determination. Three different types of solid‐phase microextraction fibers, polar, and nonpolar poly(dimethylsiloxane) and polyethylene glycol were prepared by using a sol–gel technique. The effects of different parameters such as type of fiber coating, extraction time and temperature, desorption conditions, agitation rate, and salt effect were investigated. Under the optimized conditions, the detection limit of the method was 979 ng/L using the selected ion‐monitoring mode. The interday and intraday precisions of the developed method under the optimized conditions were below 13%, and the method shows linearity in the range of 1.75–800 μg/L with a correlation coefficient of 0.9963. The optimized method was applied to the determination of formaldehyde from some biological products. The results were satisfactory compared to the standard method.  相似文献   

5.
Amoxicillin (AMO) degrades in plasma at room temperature and readily undergoes hydrolysis by the plasma amidase. In this paper, a novel, rapid and sensitive LC‐MS/MS method operated in segmental and multiple reaction monitoring has been developed for the simultaneous determination of amoxicillin and ambroxol in human plasma. The degradation of amoxicillin in plasma was well prevented by immediate addition of 20 μL glacial acetic acid to 200 μL aliquot of freshly collected plasma samples before storage at ?80°C. The sensitivity of the method was improved with segmental monitoring of the analytes, and lower limits of quantitation of 0.5 ng/mL for ambroxol and 5 ng/mL for amoxicillin were obtained. The sensitivity of our method was five times better than those of the existing methods. Furthermore, the mass response saturation problem with amoxicillin was avoided by diluting the deproteinized plasma samples with water before injection into the LC‐MS/MS system. The method was successfully employed in a pharmacokinetic study of the compound amoxicillin and ambroxol hydrochloride tablets. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A highly selective and sensitive LC‐MS‐MS method was developed and validated to quantify tiopronin in human plasma, using fudosteine as the internal standard (IS). L ‐Cysteine and 1,4‐dithiothreitol (DTT) were used as the reducer and the stabilizer to release and stabilify tiopronin from a dimmer and mix forms with endogenous thiols in the treatment of plasma samples. After a simple liquid–liquid extraction with ethyl acetate in acidic condition, the post‐treatment samples were analyzed on a C18 column interfaced with a triple‐quadruple tandem mass spectrometer using negative electrospray ionization. Methanol and water (40:60, v/v) were used as the isocratic mobile phase, with 0.2% formic acid and 1.0 mM tris (hydroxymethyl) aminomethane (Tris) in water. The method was validated to demonstrate the specificity, lower limit of quantification, accuracy and precision of measurements. The assay was linear over the concentration range 0.078–10 μg/mL. The correlation coefficients for the calibration curves ranged from 0.9980 to 0.9990. The intra‐ and inter‐day precisions, calculated from quality control samples, were not more than 10.49%. The method was employed in a pharmacokinetic study after oral administration of 200 mg tiopronin tablets to 24 healthy volunteers. Copyright © 2009 John Wiley & Sons, Ltd  相似文献   

7.
A specific and automated method was developed to quantify the anticonvulsants gabapentin, pregabalin and vigabatrin simultaneously in human serum. Samples were prepared with a protein precipitation. The hydrophilic interaction chromatography (HILIC) with a mobile phase gradient was used to divide off ions of the matrix and for separation of the analytes. Four different HILIC‐columns and two different column temperatures were tested. The Tosoh‐Amid column gave the best results: single small peaks. The anticonvulsants were detected in the multiple reaction monitoring mode (MRM) with ESI‐MS‐MS. Using a volume of 100 μL biological sample the lowest point of the standard curve, i.e. the lower LOQs were 312 ng/mL. The described HILIC‐MS‐MS method is suitable for therapeutic drug monitoring and for clinical and pharmcokinetical investigations of the anticonvulsives.  相似文献   

8.
The metabolic profile of polar (methanol) and non‐polar (hexane) extracts of Curcuma domestica, a widely used medicinal plant, was established using various different analytical techniques, including GC‐FID, GC‐MS, HR‐GC‐MS and analytical HPLC‐ESI‐MS/MS by means of LTQ‐Orbitrap technology. The major non‐volatile curcuminoids curcumin, demethoxycurcumin and bisdemethoxycurcumin were identified when their chromatographic and precursor ion masses were compared with those of authentic standard compounds. In this paper we describe for the first time a GC/MS‐based method for metabolic profiling of the hydrophilic extract. We also identified 61 polar metabolites as TMS derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Melatonin (MEL) and its chemical precursor N‐acetylserotonin (NAS) are believed to be potential biomarkers for sleep‐related disorders. Measurement of these compounds, however, has proven to be difficult due to their low circulating levels, especially that of NAS. Few methods offer the sensitivity, specificity and dynamic range needed to monitor MEL and its precursors and metabolites in small blood samples, such as those obtained from pediatric patients. In support of our ongoing study to determine the safety, tolerability and PK dosing strategies for MEL in treating insomnia in children with autism spectrum disorder, two highly sensitive LC‐MS/MS assays were developed for the quantitation of MEL and precursor NAS at pg/mL levels in small volumes of human plasma. A validated electrospray ionization (ESI) method was used to quantitate high levels of MEL in PK studies, and a validated nanospray (nESI) method was developed for quantitation of MEL and NAS at endogenous levels. In both assays, plasma samples were processed by centrifugal membrane dialysis after addition of stable isotopic internal standards, and the components were separated by either conventional LC using a Waters SymmetryShield RP18 column (2.1 × 100 mm, 3.5 µm) or on a polyimide‐coated, fused‐silica capillary self‐packed with 17 cm AquaC18 (3 µm, 125 Å). Quantitation was done using the SRM transitions m/z 233 → 174 and m/z 219 → 160 for MEL and NAS, respectively. The analytical response ratio versus concentration curves were linear for MEL (nanoflow LC: 11.7–1165 pg/mL, LC: 1165–116500 pg/mL) and for NAS (nanoflow LC: 11.0–1095 pg/mL). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We have developed a mid‐infrared laser ablation sampling technique for nano‐flow liquid chromatography coupled with tandem mass spectrometry proteomic profiling of discrete regions from biological samples. Laser ablation performed in transmission geometry was used to transfer material from 50‐µm thick tissue sections mounted on a glass microscope slide to a capturing solvent. Captured samples were processed using filter‐aided sample preparation and enzymatically digested to produce tryptic peptides for data‐dependent analysis with an ion trap mass spectrometer. Comparison with ultraviolet laser capture microdissection from neighboring regions on the same tissue section revealed that infrared laser ablation transfer has higher reproducibility between samples from different consecutive sections. Both techniques allowed for proteomics investigation of different organelles without the addition of surfactants. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Recently the connection between oxidative stress and various diseases, including cancer and Alzheimer's, attracts notice as a pathway suitable for diagnostic purposes. 8‐Oxo‐deoxyguanosine and 8‐oxo‐deoxyadenosine produced from the interaction of reactive oxygen species with DNA become prominent as biomarkers. Several methods have been developed for their determination in biofluids, including solid‐phase extraction and enzyme‐linked immunosorbent assays. However, still, there is a need for reliable and fast analytical methods. In this context, solid‐phase microextraction offers many advantages such as flexibility in geometry and applicable sample volume, as well as high adaptability to high‐throughput sampling. In this study, a solid‐phase microextraction method was developed for the determination of 8‐oxo‐deoxyguanosine and 8‐oxo‐deoxyadenosine in biofluids. The extractive phase of solid‐phase microextraction consisted of hydrophilic–lipophilic balanced polymeric particles. In order to develop a solid‐phase microextraction method suitable for the determination of the analytes in saliva and urine, several parameters, including desorption solvent, desorption time, sample pH, and ionic strength, were scrutinized. Analytical figures of merit indicated that the developed method provides reasonable interday and intraday precisions (<15% in both biofluids) with acceptable accuracy. The method provides a limit of quantification for both biomarkers at 5.0 and 10.0 ng/mL levels in saliva and urine matrices, respectively.  相似文献   

13.
Rapid, simple and reliable HPLC/UV and LC‐ESI‐MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C30 column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC‐ESI‐MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC‐ESI‐MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC‐ESI‐MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC‐ESI‐MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A robust, specific and fully validated LC‐MS/MS method as per general practices of industry has been developed for estimation of lacidipine (LAC) with 100 μL of human plasma using lacidipine‐13C8 as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode. A simple liquid–liquid extraction process was used to extract LAC and IS from human plasma. The total run time was 3.0 min and the elution of LAC and IS occurred at 1.96 and 1.97 min; this was achieved with a mobile phase consisting of 5 mm ammonium acetate buffer–acetontrile (15:85 v/v) at a flow rate of 0.60 mL/min on a Zorbax SB C18 (50 × 4.6 mm, 5 µm) column. A linear response function was established for the range of concentrations 50–15,000 pg/mL (r > 0.998) for LAC. The current developed method has negligible matrix effect and is free from unwanted adducts and clusters which are formed owing to system such as solvent or mobile phase. The developed assay method was applied to an oral pharmacokinetic study in humans and successfully characterized the pharmacokinetic data up to 72 h. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A simple LC‐MS/MS method was developed and validated for quantitatively analyzing six classes of 26 abused drugs and metabolites in human urine: (1) illicit drugs; (2) opiates; (3) synthetic opioids; (4) sedative; (5) stimulants; and (6) γ‐aminobutyric acid analogs. All urine samples were diluted with a mixture of isotope‐labeled internal standards, hydrolyzed with β‐glucuronidase and directly injected in a gradient chromatographic run. The mobile phase was composed of 0.1% formic acid in water and 0.1% of formic acid in methanol. A 4.9 min run time using the multiplexing driver and ultra‐biphenyl column (50 × 2.1 mm, 5 µm, RESTEK) allowed all drugs to have sufficient resolution in a short elute time. The overlapping liquid chromatography runs and scheduled multiple reaction monitoring acquisition method resulted in a higher overall throughput for the system. The result was linear over the studied range (2–16,000 ng/mL) for all compounds with correlation coefficients r2 ≥ 0.995. The intra‐day and inter‐day precisions and accuracies were within 15% and recovery was between 83 and 115% for all analytes. Freeze–thaw stability for three cycles and long‐term stability (57 days, ?20°C) were established for all analytes. The cross‐validation between College of American Pathologists and in‐house was validated (0.06% ≤ bias ≤ 12.3%). The applicability of the method was examined by analyzing urine samples from chronic pain patients (n = 610). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A method has been developed to determine α, β and γ diastereoisomers of hexabromocyclododecane (HBCD), a brominated flame retardant, in sewage sludge, based on the ultrasonic‐assisted extraction (UAE) of samples with dichloromethane–ACN (1:1) and the subsequent clean‐up of extracts by dispersive solid phase extraction with primary–secondary amine. Levels of HBCD diastereoisomers were determined by LC coupled with ESI MS/MS. Evaluation of the matrix effect showed a high ion suppression for all the diastereoisomers studied, which was counteracted by using a mixture of labelled HBCD diastereoisomers as internal standards. This method yielded recoveries in the range of 79.6–112.5% with SDs equal or lower than 9.1 The limits of detection were 0.3 ng/g for α‐ and β‐HBCD and 0.2 ng/g for γ‐HBCD. The developed method was successfully applied to 19 sludge samples collected from the province of Madrid (Spain). In most of the samples, β‐HBCD was below the method detection limit, whereas α‐ and γ‐HBCD were quantified in all of the sludge samples, and γ‐HBCD was the predominant diastereoisomer in 63% of the analyzed samples and α‐HBCD predominated in the rest.  相似文献   

17.
A simple and sensitive method was developed and validated for the simultaneous determination of 103 pesticide residues in tea by LC‐MS/MS. For the analysis of the pesticide with polarity, thermal lability or low volatility, this LC‐MS/MS method has an advantage over GC. In this work, residual pesticides were extracted from the tea sample with ACN and then purified using Carb‐NH2 SPE cartridges. Using the multiple reaction monitoring mode, the pesticides were quantified and identified by the most abundant and characteristic fragment ions. The recoveries obtained for each pesticide ranged between 65 and 114% at three spiked concentration levels. The intra‐day precisions were lower than 19.6%. Good linear relationships were observed with the correlation coefficients r2 >0.996 for all analytes. The established method was successfully applied to the determination of pesticide residues in real tea samples.  相似文献   

18.
We developed a solid‐phase microextraction coupled to GC with electron‐capture detection method for the detection of acrylamide in food samples. Single‐walled carbon nanotubes and polypyrrole were electropolymerized onto a stainless‐steel wire as a coating, which possessed a homogeneous, porous, and wrinkled surface, chemical and mechanical stability, long lifespan (over 300 extractions), and good extraction efficiency for acrylamide. The linearity range between the signal intensity and the acrylamide concentration was found to be in the range 0.001–1 μg/mL, and the coefficient of determination was 0.9985. The LOD, defined as three times the baseline noise, was 0.26 ng/mL. The reproducibility for each single fiber (n = 6) and the fiber‐to‐fiber (n = 5) repeatability prepared in the same batch were less than 4.1 and 11.2%, respectively.  相似文献   

19.
Monolithic fibers were synthesized and applied for the solid‐phase microextraction and determination of chlorophenols in environmental water samples by coupling with HPLC. The fibers were prepared by copolymerization of vinylimidazole and ethylene dimethacrylate as functional monomer and cross‐linker, respectively. The effect of the preparation conditions of monolithic fibers on the extraction efficiencies was investigated in detail. Several characteristic techniques, such as elemental analysis, infrared spectroscopy, mercury‐intrusion porosimetry, and SEM were used to characterize the monolithic material. The effect of the extraction parameters, including desorption solvent, extraction and desorption time, pH values, and ionic strength in sample matrix on the extraction performance was investigated thoroughly. Under the improved extraction conditions, the linear ranges of 2‐chlorophenol, 2,4‐dichlorophenol and pentachlorophenol were 1.0–200 μg/L and 2.0–200 μg/L for 2,4,6‐trichlorophenol. The detection limits (S/N = 3) were in the range of 0.16–0.45 μg/L, the RSDs for intraday and interday precisions were <7.0%. Finally, the proposed method was successfully used to detect different environmental water samples. The recoveries of spiked water samples were ranged from 90.0 to 115%. At the same time, satisfactory repeatability was achieved with RSDs < 9.0%.  相似文献   

20.
A sensitive, rapid and robust HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the quantification of sotalol in rat plasma. Plasma samples were precipitated with acetonitrile before analysis. The chromatographic separation was performed on an Atlantis hydrophilic interaction liquid chromatography Silica column (50 × 2.1 mm, 3 µm) with a gradient mobile phase of 10 mm NH4COOH (containing 0.2% of formic acid) as buffer A and acetonitrile as mobile phase B. Sotalol (m/z 273.2 → 255.1) and atenolol (the internal standard, IS, m/z 267.2 → 190.1) were monitored under positive ionization mode with 5500 QTRAP. Retention time of sotalol and the IS were 2.69 and 3.43 min, respectively. The linear range was 5–500 nm based on the analysis of 0.1 mL of plasma. The intrabatch precision ranged from 1.2 to 6.1%, and the inter‐batch precision was from 3.3 to 6.5%. The coefficient of variation of IS‐normalized matrix factor was 7.6%. Experiments for stability were performed and the analyte was sufficiently stable. A run time of 6 min for each injection made it possible to analyze a high throughput of plasma samples. The assay was successfully applied to the determination of sotalol in rat plasma after a micro‐dose oral administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号