首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Particle separation is a fundamental operation in the areas of biology and physical chemistry. A variety of force fields have been used to separate particles in microfluidic devices, among which electric field may be the most popular one due to its general applicability and adaptability. So far, however, electrophoresis‐based separations have been limited primarily to batchwise processes. Dielectrophoresis (DEP)‐based separations require in‐channel micro‐electrodes or micro‐insulators to produce electric field gradients. This article introduces a novel particle separation technique in DC electrokinetic flow through a planar double‐spiral microchannel. The continuous separation arises from the cross‐stream dielectrophoretic motion of particles induced by the non‐uniform electric field inherent to curved channels. Specifically, particles are focused by DEP to one sidewall of the first spiral, and then dielectrophoretically deflected toward the other sidewall of the second spiral at a particle‐dependent rate, leading to focused particle streams along different flow paths. This DEP‐based particle separation technique is demonstrated in an asymmetric double‐spiral microchannel by continuously separating a mixture of 5/10 μm particles and 3/5 μm particles.  相似文献   

2.
Zhu J  Hu G  Xuan X 《Electrophoresis》2012,33(6):916-922
The fundamental understanding of particle electrokinetics in microchannels is relevant to many applications. To date, however, the majority of previous studies have been limited to particle motion within the area of microchannels. This work presents the first experimental and numerical investigation of electrokinetic particle entry into a microchannel. We find that the particle entry motion can be significantly deviated from the fluid streamline by particle dielectrophoresis at the reservoir-microchannel junction. This negative dielectrophoretic motion is induced by the inherent non-uniform electric field at the junction and is insensitive to the microchannel length. It slows down the entering particles and pushes them toward the center of the microchannel. The consequence is the demonstrated particle deflection, focusing, and trapping phenomena at the reservoir-microchannel junction. Such rich phenomena are studied by tuning the AC component of a DC-biased AC electric field. They are also utilized to implement a selective concentration and continuous separation of particles by size inside the entry reservoir.  相似文献   

3.
The dielectrophoretic (DEP) choking phenomenon is revisited for Janus particles that are transported electrokinetically through a microchannel constriction by a direct‐current (DC) electric field. The negative DEP force that would block a particle with a diameter significantly smaller than that of the constriction at its inlet is seen to be relaxed by the rotation of the Janus particle in a direction that minimizes the magnitude of the DEP force. This allows the particle to pass through the constriction completely. An arbitrary Lagrangian‐Eulerian (ALE) numerical method is used to solve the nonlinearly coupled electric field, flow field, and moving particle, and the DEP force is calculated by the Maxwell stress tensor (MST) method. The results show how Janus particles with non‐uniform surface potentials overcome the DEP force and present new conditions for the DEP choking by a parametric study. Particle transportation through microchannel constrictions is ubiquitous, and particle surface properties are more likely to be non‐uniform than not in practical applications. This study provides new insights of importance for non‐uniform particles transported electrokinetically in a microdevice.  相似文献   

4.
Hawkins BG  Kirby BJ 《Electrophoresis》2010,31(22):3622-3633
We simulate electrothermally induced flow in polymeric, insulator-based dielectrophoresis (iDEP) systems with DC-offset, AC electric fields at finite thermal Péclet number, and we identify key regimes where electrothermal (ET) effects enhance particle deflection and trapping. We study a single, two-dimensional constriction in channel depth with parametric variations in electric field, channel geometry, fluid conductivity, particle electrophoretic (EP) mobility, and channel electroosmotic (EO) mobility. We report the effects of increasing particle EP mobility, channel EO mobility, and AC and DC field magnitudes on the mean constriction temperature and particle behavior. Specifically, we quantify particle deflection and trapping, referring to the deviation of particles from their pathlines due to dielectrophoresis as they pass a constriction and the stagnation of particles due to negative dielectrophoresis near a constriction, respectively. This work includes the coupling between fluid, heat, and electromagnetic phenomena via temperature-dependent physical parameters. Results indicate that the temperature distribution depends strongly on the fluid conductivity and electric field magnitude, and particle deflection and trapping depend strongly on the channel geometry. Electrothermal (ET) effects perturb the EO flow field, creating vorticity near the channel constriction and enhancing the deflection and trapping effects. ET effects alter particle deflection and trapping responses in insulator-based dielectrophoresis devices, especially at intermediate device aspect ratios (2 ≤ r ≤ 7) in solutions of higher conductivity (σ m ≥ 1 × 10(-3)S/m). The impact of ET effects on particle deflection and trapping are diminished when particle EP mobility or channel EO mobility is high. In almost all cases, ET effects enhance negative dielectrophoretic particle deflection and trapping phenomena.  相似文献   

5.
Unni HN  Keh HJ  Yang C 《Electrophoresis》2007,28(4):658-664
Electrokinetically driven microfluidic devices that are used for biological cell/particle manipulation (e.g., cell sorting, separation) involve electrokinetic transport of these particles in microchannels whose dimension is comparable with particles' size. This paper presents an analytical study on electrokinetic transport of a charged spherical particle in a charged parallel-plate microchannel. Under the thin electric double-layer assumption, solutions in closed-form solutions for the particle velocity and disturbed electrical and fluid velocity fields are obtained for plane-symmetric (along the channel centerline) and asymmetric (off the channel centerline) motions of a sphere in a parallel-plate microchannel. The effects of relative particle size and eccentricity (i.e., off the centerline distance) on a particle's translational and rotational velocities are analyzed.  相似文献   

6.
In classical electrokinetics, the electrophoretic velocity of a dielectric particle is a linear function of the applied electric field. Theoretical studies have predicted the onset of nonlinear electrophoresis at high electric fields because of the nonuniform surface conduction over the curved particle. However, experimental studies have been left behind and are insufficient for a fundamental understanding of the parametric effects on nonlinear electrophoresis. We present in this work a systematic experimental study of the effects of buffer concentration, particle size, and particle zeta potential on the electrophoretic velocity of polystyrene particles in a straight rectangular microchannel for electric fields of up to 3 kV/cm. The measured nonlinear electrophoretic particle velocity is found to exhibit a 2(±0.5)-order dependence on the applied electric field, which appears to be within the theoretically predicted 3- and 3/2-order dependences for low and high electric fields, respectively. Moreover, the obtained nonlinear electrophoretic particle mobility increases with decreasing buffer concentration (for the same particle) and particle size (for particles with similar zeta potentials) or increasing particle zeta potential (for particles with similar sizes). These observations are all consistent with the theoretical predictions for high electric fields.  相似文献   

7.
Xiangchun Xuan 《Electrophoresis》2019,40(18-19):2484-2513
Microfluidic devices have been extensively used to achieve precise transport and placement of a variety of particles for numerous applications. A range of force fields have thus far been demonstrated to control the motion of particles in microchannels. Among them, electric field‐driven particle manipulation may be the most popular and versatile technique because of its general applicability and adaptability as well as the ease of operation and integration into lab‐on‐a‐chip systems. This article is aimed to review the recent advances in direct current (DC) (and as well DC‐biased alternating current) electrokinetic manipulation of particles for microfluidic applications. The electric voltages are applied through electrodes that are positioned into the distant channel‐end reservoirs for a concurrent transport of the suspending fluid and manipulation of the suspended particles. The focus of this review is upon the cross‐stream nonlinear electrokinetic motions of particles in the linear electroosmotic flow of fluids, which enable the diverse control of particle transport in microchannels via the wall‐induced electrical lift and/or the insulating structure‐induced dielectrophoretic force.  相似文献   

8.
When aqueous suspensions of 1 μm, negatively charged polystyrene particles are subject to a 1 kHz alternating electric field of strength greater than 7 kV(rms) m(-1), dynamic elliptical clusters of particles spontaneously form. With potential applications in microchannel fluidics in mind, we characterize how cluster formation and particle circulation, driven by induced dipole-dipole interactions, is critically dependent on time, field strength, electrolyte concentration, and cell thickness. Logarithmic growth of cluster size is observed, and particle velocity within the clusters is found to be proportional to cluster length. Increasing cell thickness from 10 to 60 μm increases the projected cluster area but decreases cluster aspect ratio as the result of changing particle dispersal rates. Clusters are shown to generate significant fluid shear suitable for microchannel mixing applications. These clusters are observed to distort under transverse fluid flow and, above a critical flow rate, to undergo a transition to form regularly spaced particle streams, which may be suitable for two-dimensional visualization of fluid flow.  相似文献   

9.
Church C  Zhu J  Xuan X 《Electrophoresis》2011,32(5):527-531
Dielectrophoresis has been widely used to focus, trap, concentrate, and sort particles in microfluidic devices. This work demonstrates a continuous separation of particles by size in a serpentine microchannel using negative dielectrophoresis. Depending on the magnitude of the turn-induced dielectrophoretic force, particles travelling electrokinetically through a serpentine channel either migrate toward the centerline or bounce between the two sidewalls. These distinctive focusing and bouncing phenomena are utilized to implement a dielectrophoretic separation of 1 and 3 μm polystyrene particles under a DC-biased AC electric field of 880 V/cm on average. The particle separation process in the entire microchannel is simulated by a numerical model.  相似文献   

10.
Insulator‐based dielectrophoresis (iDEP) is a well‐known technique that harnesses electric fields for separating, moving, and trapping biological particle samples. Recent work has shown that utilizing DC‐biased AC electric fields can enhance the performance of iDEP devices. In this study, an iDEP device with 3D varying insulating structures analyzed in combination with DC biased AC fields is presented for the first time. Using our unique reactive ion etch lag, the mold for the 3D microfluidic chip is created with a photolithographic mask. The 3D iDEP devices, whose largest dimensions are 1 cm long, 0.18 cm wide, and 90 μm deep are then rapidly fabricated by curing a PDMS polymer in the glass mold. The 3D nature of the insulating microstructures allows for high trapping efficiency at potentials as low as 200 Vpp. In this work, separation of Escherichia coli from 1 μm beads and selective trapping of live Staphylococcus aureus cells from dead S. aureus cells is demonstrated. This is the first reported use of DC‐biased AC fields to selectively trap bacteria in 3D iDEP microfluidic device and to efficiently separate particles where selectivity of DC iDEP is limited.  相似文献   

11.
This paper reviews both theory and experimental observation of the AC electrokinetic properties of conducting microparticles suspended in an aqueous electrolyte. Applied AC electric fields interact with the induced charge in the electrical double layer at the metal particle–electrolyte interface. In general, particle motion is governed by both the electric field interacting with the induced dipole on the particle and also the induced-charge electro-osmotic (ICEO) flow around the particle. The importance of the RC time for charging the double layer is highlighted. Experimental measurements of the AC electrokinetic behaviour of conducting particles (dielectrophoresis, electro-rotation and electro-orientation) are compared with theory, providing a comprehensive review of the relative importance of particle motion due to forces on the induced dipole compared with motion arising from induced-charge electro-osmotic flow. In addition, the electric-field driven assembly of conducting particles is reviewed in relation to their AC electrokinetic properties and behaviour.  相似文献   

12.
Dielectrophoresis is the electrokinetic movement of particles due to polarization effects in the presence of non-uniform electric fields. In insulator-based dielectrophoresis (iDEP) regions of low and high electric field intensity, i.e. non-uniformity of electric field, are produced when the cross-sectional area of a microchannel is decreased by the presence of electrical insulating structures between two electrodes. This technique is increasingly being studied for the manipulation of a wide variety of particles, and novel designs are continuously developed. Despite significant advances in the area, complex mixture separation and sample fractionation continue to be the most important challenges. In this work, a microchannel design is presented for carrying out direct current (DC)-iDEP for the separation of a mixture of particles. The device comprises a main channel, two side channels and two sections of cylindrical posts with different diameters, which will generate different non-uniformities in the electric field on the main channel, designed for the discrimination and separation of particles of two different sizes. By applying an electric potential of 1000 V, a mixture of 1 and 4 μm polystyrene microspheres were dielectrophoretically separated and concentrated at the same time and then redirected to different outlets. The results obtained here demonstrate that, by carefully designing the device geometry and selecting operating conditions, effective sorting of particle mixtures can be achieved in this type of multi-section DC-iDEP devices.  相似文献   

13.
We have developed a method for measuring the electrophoretic mobility of submicrometer, fluorescently labeled particles and the electroosmotic mobility of a microchannel. We derive explicit expressions for the unknown electrophoretic and the electroosmotic mobilities as a function of particle displacements resulting from alternating current (AC) and direct current (DC) applied electric fields. Images of particle displacements are captured using an epifluorescent microscope and a CCD camera. A custom image-processing code was developed to determine image streak lengths associated with AC measurements, and a custom particle tracking velocimetry (PTV) code was devised to determine DC particle displacements. Statistical analysis was applied to relate mobility estimates to measured particle displacement distributions.  相似文献   

14.
A novel method of sheathless particle focusing by induced charge electrokinetic flow in a microchannel is presented in this paper. By placing a pair of metal plates on the opposite walls of the channel and applying an electrical field, particle focusing is achieved due to the two pairs of vortex that constrain the flow of the particle solution. As an example, the trajectories of particles under different electrical fields with only one metal plate on one side channel wall were numerically simulated and experimentally validated. Other flow focusing effects, such as the focused width ratio (focused width/channel width) and length ratio (focused length/half‐length of metal plate) of the sample solution, were also numerically studied. The results show that the particle firstly passes through the gaps between the upstream vortices and the channel walls. Afterwards, the particle is focused to pass through the gap between the two downstream vortices that determine the focused particle position. Numerical simulations show that the focused particle stream becomes thin with the increases in the applied electrical field and the length of the metal plates. As regards to the focused length ratio of the focused stream, however, it slightly increases with the increase in the applied electrical field and almost keeps constant with the increase in the length of the metal plate. The size of the focused sample solution, therefore, can be easily adjusted by controlling the applied electrical field and the sizes of the metal plates.  相似文献   

15.
For electroosmotic pumping, a large direct‐current (DC) electric field (10+ V/cm) is applied across a liquid, typically an aqueous electrolyte. At these high voltages, water undergoes electrolysis to form hydrogen and oxygen, generating bubbles that can block the electrodes, cause pressure fluctuations, and lead to pump failure. The requirement to manage these gases constrains system designs. This article presents an alternative polar liquid for DC electrokinetic pumping, propylene carbonate (PC), which remains free of bubbles up to at least 10 kV/cm. This offers the opportunity to create electrokinetic devices in closed configurations, which we demonstrate with a fully sealed microfluidic hydraulic actuator. Furthermore, the electroosmotic velocity of PC is similar to that of water in PDMS microchannels. Thus, water could be substituted by PC in existing electroosmotic pumps.  相似文献   

16.
Insulator-based dielectrophoretic (iDEP) microdevices have been limited to work with Newtonian fluids. We report an experimental study of the fluid rheological effects on iDEP focusing and trapping of polystyrene particles in polyethylene oxide, xanthan gum, and polyacrylamide solutions through a constricted microchannel. Particle focusing and trapping in the mildly viscoelastic polyethylene oxide solution are slightly weaker than in the Newtonian buffer. They are, however, significantly improved in the strongly viscoelastic and shear thinning polyacrylamide solution. These observed particle focusing behaviors exhibit a similar trend with respect to electric field, consistent with a revised theoretical analysis for iDEP focusing in non-Newtonian fluids. No apparent focusing of particles is achieved in the xanthan gum solution, though the iDEP trapping can take place under a much larger electric field than the other fluids. This is attributed to the strong shear thinning-induced influences on both the electroosmotic flow and electrokinetic/dielectrophoretic motions.  相似文献   

17.
《Electrophoresis》2018,39(11):1339-1348
AC fields induce charges at the structural interfaces of particles or biological cells. The interaction of these charges with the field generates frequency‐dependent forces that are the basis for AC‐electrokinetic effects such as dielectrophoresis (DEP), electrorotation (ROT), electro‐orientation, and electro‐deformation. The effects can be used for the manipulation or dielectric single‐particle spectroscopy. The observation of a particular effect depends on the spatial and temporal field distributions, as well as on the shape and the dielectric and viscoelastic properties of the object. Because the effects are not mutually independent, combined frequency spectra are obtained, for example, discontinuous DEP and ROT spectra with ranges separated by the reorientation of nonspherical objects in the linearly and circularly polarized DEP and ROT fields, respectively. As an example, the AC electrokinetic behavior of a three‐axial ellipsoidal single‐shell model with the geometry of chicken‐red blood cells is considered. The geometric and electric problems were separated using the influential‐radius approach. The obtained finite‐element model can be electrically interpreted by an RC model leading to an expression for the Clausius–Mossotti factor, which permits the derivation of force, torque, and orientation spectra, as well as of equations for the critical frequencies and force plateaus in DEP and of the characteristic frequencies and peak heights in ROT. Expressions for the orientation in linearly and circularly polarized fields, as well as for the reorientation frequencies were also derived. The considerations suggested that the simultaneous registration of various AC‐electrokinetic spectra is a step towards the dielectric fingerprinting of single objects.  相似文献   

18.
Xuan X  Li D 《Electrophoresis》2005,26(18):3552-3560
The electrokinetic focusing and the resultant accelerated electrophoretic motion of polystyrene particles and red blood cells were visualized in microfluidic cross-channels. The experimentally measured width of the focused stream and the measured velocity increase of particles and cells at different voltage ratios follow the proposed analytical formula within the experimental error. The attained velocity increase is insensitive to the particle size, particle property (i.e., particle or cell), and particle trajectory. By solving the electrical potential field in the cross-channel at the experimental conditions, we demonstrate that the squeezed electrical field lines in the channel intersection determine the shape of the focused stream, and the nonuniform distribution of axial electrical field strength underlies the variation of particle/cell electrophoretic velocity through the focusing region. However, the dielectrophoretic force resulting from the nonuniform electrical field in the intersection seems to push the acceleration region of particles and cells slightly in the downstream direction. We have also achieved the single particle/cell dispensing by instantly triggering an electrical pulse perpendicular to the focused particulate flow in a double-cross microchannel. The electrokinetic manipulation of particle/cell in microchannels demonstrated in this work can be used for developing integrated lab-on-a-chip devices for studies of cells.  相似文献   

19.
We demonstrate micromechanical strain sensors with integrated readout based on carbon nanocones and discs (CNCs) which are aligned into a string‐like formation using an alternating electric field and studied by AC impedance spectroscopy and electromechanical methods. The CNC particles are first dispersed into a polymer matrix with a particle fraction of 0.1 vol %. This value is well below the percolation threshold (~ 2 vol %), which suppresses particle aggregation and facilitates transparency allowing the use of an UV‐curable polymer. Alignment was carried out with a 1 kHz, 4 kV/cm electric field and is a consequence of dielectrophoretic effect. It develops in minutes and makes the initially insulating, nonaligned material conductive. This is followed by UV curing of the polymer matrix, which renders a solid state device. The stretching of the aligned strings in the cured polymer leads to a reversible piezoresistive effect, and a gauge factor of about 50 is observed. This is in a sharp contrast to CNC films with particle fraction above percolation threshold (13 vol %), which are conductive but not sensitive to stretching. The strings are Ohmic in nature and moreover show higher DC conductivity (22–500 S/m) compared to identically prepared carbon black strings (1–22 S/m). © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

20.
In this study, we report a systematic study of the response of a charged microparticle confined in an optical trap and driven by electric fields. The particle is embedded in a polar fluid, hence, the role of ions and counterions forming a double layer around the electrodes and the particle surface itself has been taken into account. We analyze two different cases: (i) electrodes energized by a step‐wise voltage (DC mode) and (ii) electrodes driven by a sinusoidal voltage (AC mode). The experimental outcomes are analyzed in terms of a model that combines the electric response of the electrolytic cell and the motion of the trapped particle. In particular, for the DC mode we analyze the transient particle motion and correlate it with the electric current flowing in the cell. For the AC mode, the stochastic and deterministic motion of the trapped particle is analyzed either in the frequency domain (power spectral density, PSD) or in the time domain (autocorrelation function). Moreover, we will show how these different approaches (DC and AC modes) allow us, assuming predictable the applied electric field (here generated by plane parallel electrodes), to provide accurate estimation (3%) of the net charge carried by the microparticle. Vice versa, we also demonstrate how, once predetermined the charge, the trapped particle acts as a sensitive probe to reveal locally electric fields generated by arbitrary electrode geometries (in this work, wire‐tip geometry).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号