首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
(E)‐ and (Z)‐1,2‐bis(trifluoromethyl)ethene‐1,2‐dicarbonitrile ((E)‐ and (Z)‐BTE, resp., =(E)‐ and (Z)‐2,3‐bis(trifluoromethyl)but‐2‐enedinitrile) were used as a stereochemical probe in studying (2+2) cycloadditions of acceptor with donor alkenes. The additions to methyl (E)‐ and (Z)‐propenyl ether gave rise to the eight conceivable cyclobutanes 8 , although in different ratios in reactions of (E)‐ and (Z)‐BTE. The 19F‐NMR data served the structural assignment and the quantitative analysis. The mechanistic discussion is based on rotations and ring closures of the assumed 1,4‐zwitterionic intermediates. Dimethylketene dimethyl acetal, methylketene dimethyl acetal, and ketene diethyl acetal show an increasing rate in their reactions with BTE as well as in the equilibration of the cycloadducts.  相似文献   

2.
The reactions of 3‐phenyl‐1‐azabicyclo[1.1.0]butane ( 4 ) with dimethyl dicyanofumarate ((E)‐ 8 ) and dimethyl dicyanomaleate ((Z)‐ 8 ) lead to the same mixture of cis‐ and trans‐4‐phenyl‐1‐azabicyclo[2.1.1]hexane 2,3‐dicarboxylates (cis‐ 11 and trans‐ 11 , resp.; Scheme 3). This result of a formal cycloaddition to the central C? N bond of 4 is interpreted by a stepwise reaction mechanism via a relatively stable zwitterionic intermediate 10 , which could be intercepted by morpholine to give a 1 : 1 : 1 adduct 12 , which undergoes a spontaneous elimination of HCN to yield the fumarate 13 (Scheme 4).  相似文献   

3.
Bis((Z)‐5‐phenyl‐2‐phenylmethylidene‐1, 3‐dithiole‐4‐yl)monosulfane ( 6 ), a molecule consisting of two diphenyldithiafulvene units connected by a sulfur bridge, was synthesized by the selective lithiation of (Z)‐4‐phenyl‐2‐phenylmethylidene‐1, 3‐dithiole ( 7a ) at the endocyclic double bond and by subsequent reaction of the lithiated intermediate with bis(phenylsulfonyl)sulfane. Since this reaction sequence proceeded with retention of configuration, of three possible isomers (E, E, Z, E, and Z, Z) only the Z, Z form was obtained. On the basis of the X‐ray structure analysis and the NMR‐spectroscopic characterization of 6 supplemented by the NMR parameters of (E)‐ and (Z)‐4‐phenyl‐2‐phenylmethylidene‐1, 3‐dithiole, it was demonstrated that two characteristic 5J coupling constants of the proton at the exocyclic double bond indicate the configuration (Z or E) of disubstituted dithiafuvene derivatives.  相似文献   

4.
Parallel and practical methods for the preparation of both (E)‐ and (Z)‐β‐aryl1‐β‐aryl2‐α,β‐unsaturated esters 1 and (E)‐ and (Z)‐α‐aryl1‐β‐aryl2‐α,β‐unsaturated esters 2 are described. These methods involve accessible, robust, stereocomplementary N‐methylimidazole (NMI)‐mediated enol tosylations (14 examples, 70–99 % yield), as well as stereoretentive Suzuki–Miyaura cross‐couplings (36 examples, 64–99 % yield). The highlighted feature of the present protocol is the use of parallel and stereocomplementary approaches to obtain highly (E)‐ and (Z)‐pure products 1 and 2 by utilizing sequential enol tosylations and cross‐coupling reactions. An expeditious and parallel synthesis of (E)‐ and (Z)‐zimelidine ( 3 ), which is a highly representative selective serotonin reuptake inhibitor (SSRI), was performed by utilizing the present methods.  相似文献   

5.
Hydroalumination‐brominolysis of vinylacetylenic alcohols 1 – 4 provides a novel entry to synthetically useful (E)‐ and (Z)‐bromoalkadienols, and bromoallenols, which are otherwise hardly accessible. An electrophilic cleavage of cyclic intermediate A follows competing mechanistic pathways, giving rise to isomeric (Z)‐bromodienols 5 – 8 and allenic alcohols 9 – 12 . The latter are stereoselectively converted to (E)‐bromoalkadienols 13 – 16 by CuBr‐catalyzed anionotropic rearrangement.  相似文献   

6.
Methyl (2Z,6Z,10E,14E)‐ ( 3 ) and methyl (2E,6Z,10E,14E)‐geranylfarnesoate ( 4 ) were prepared, and then individually cyclized in the presence of the superacid FSO3H. In the case of substrate 3 , the scalaranic ester 9 (26%) and the cheilanthanic ester 10 (39%) were isolated. Under the same conditions, substrate 4 afforded a mixture of the corresponding stereoisomers 11 (25%) and 12 (63%). The observed product selectivity supports that the internal, (6Z)‐configured C?C bond in these and other biologically relevant substrates plays an essential role in the cyclization process.  相似文献   

7.
When ‘thiocarbonyl ylide' 1A (=(2,2,4,4‐tetramethyl‐3‐oxocyclobutylidenesulfonio)methanide) is generated from the dihydrothiadiazole 5A by N2 extrusion at 40° in the presence of 2,3‐bis(trifluoromethyl)fumaronitrile ((E)‐ 10 ), a cyclic seven‐membered ketene imine 11 and trans‐thiolane 12 are formed (81 : 19). The reaction of 1A with (Z)‐ 10 furnishes 11, 12 , and cis‐thiolane 25 in the ratio of 82 : 12 : 6. The strained ketene imine 11 is crystalline and storable as a consequence of the stabilizing ‘perfluoroalkyl effect'. The ketene imine group is stereogenic; 11 has a transoid structure with respect to the CF3 groups, and there is no evidence for the cisoid diastereoisomer. Ketene imine 11 adds H2O, MeOH, and PhNH2. In solution at 60°, 11 undergoes an irreversible ring contraction, furnishing the thiolanes 12 / 25 98 : 2. The rate constant of this first‐order rearrangement increases 850‐fold, as the solvent polarity rises from cyclohexane to CD3CN, in accordance with a zwitterionic intermediate. It is the same intermediate that is initially formed from 1A and 10 , and its intramolecular N‐ and C‐alkylation give rise to 11 and 12 + 25 , respectively. In contrast to 1A , thiocarbonyl ylide 27 , which harbors the sterically less‐demanding adamantylidene group, reacts with (E)‐ 10 to give trans‐thiolane 29 , but no ketene imine. The precursor 26 catalyzes the (Z)/(E) isomerization of 10 ((E)/(Z) ca. 95 : 5 at equilibrium), thus obviating conclusions on steric course and mechanism of this cycloaddition.  相似文献   

8.
(all‐E)‐5,6‐Diepikarpoxanthin (=(all‐E,3S,5S,6S,3′R)‐5,6‐dihydro‐β,β‐carotene‐3,5,6,3′‐tetrol; 1 ) was submitted to thermal isomerization and I2‐catalyzed photoisomerization. The structures of the main products, i.e. (9Z)‐ ( 2 ), (9′Z)‐ ( 3 ), (13Z)‐ ( 4 ), (13′Z)‐ ( 5 ), and (15Z)‐5,6‐diepikarpoxanthin ( 6 ), were determined by their UV/VIS, CD, 1H‐NMR, and mass spectra. In addition, (9Z,13′Z)‐ or (13Z,9′Z)‐ ( 7 ), (9Z,9′Z)‐ ( 8 ), and (9Z,13Z)‐ or (9′Z,13′Z)‐5,6‐diepikarpoxanthin ( 9 ) were tentatively identified as minor products of the I2‐catalyzed photoisomerization.  相似文献   

9.
《中国化学》2018,36(8):712-715
Herein, two efficient palladium‐catalyzed intermolecular oxidative coupling reactions of (Z)‐enamines with isocyanides via selective β‐C(sp2)‐H and/or C=C bond cleavage have been developed, leading to controllable chemodivergent and stereoselective construction of a wide range of (E)‐β‐carbamoylenamine derivatives containing strong intramolecular hydrogen bonds. Furthermore, possible reaction pathways for these transformations are proposed on the basis of preliminary mechanism studies.  相似文献   

10.
Annulenoid Tetrathiafulvalenes: 5,16‐Bis(1,3‐benzodithiol‐2‐ylidene)‐5,16‐dihydrotetraepoxy‐ and 5,16‐Bis(1,3‐benzodithiol‐2‐ylidene)‐5,16‐dihydrotetraepithio[22]annulenes(2.1.2.1) The title compounds are among the first tetrathiafulvalenes with annulene spacers, here with tetraepoxy‐[22]annulene(2.1.2.1) (see 3a ), tetraepithio[22]annulene(2.1.2.1) (see 3b ), and diepithiodiepoxy[22]annulene(2.1.2.1) (see 23 ) units. The annulenoid tetrathiafulvalenes 3a and 3b are prepared by cyclizing McMurry coupling of the 5,5′‐(1,3‐benzodithiol‐2‐ylidenemethylene)bis[furan‐ or thiophene‐2‐carbaldehydes] ( 8a or 8b , resp.) or by Wittig reaction of (1,3‐benzodithiol‐2‐yl)tributylphosphonium tetrafluoroborate ( 13b ) with tetraepoxy[22]annulene(2.1.2.1)‐1,12‐dione 20 (formation of 3a ) or diepithiodiepoxy[22]annulene(2.1.2.1)‐1,12‐dione 22 (formation of 23 ). The annulenoide tetrathiafulvalene 3a is obtained as a mixture of the isomers (E,E)‐ and (Z,Z)‐ 3a . At 130°, (Z,Z)‐ 3a rearranges quantitatively into the (E,E)‐isomer. Isomer (E,E)‐ 3a is a dynamic molecule, where the (E)‐ethene‐1,2‐diyl bridges rotate around the adjacent σ‐bonds. The tetraepithioannulene derivative 3b as well as 23 only exist in the (Z,Z)‐configuration. The oxidation of (E,E/Z,Z)‐ 3a with Br2 yields the annulene‐bridged tetrathiafulvalene dication (E,E)‐ 3a Ox, while with 4,5‐dichloro‐3,6‐dioxocyclohexa‐1,4‐diene‐1,2‐dicarbonitrile (DDQ) obviously only the radical cation 3a Sem is formed, which belongs to the class of cyanine‐like violenes. The annulenoide tetrathiafulvalenes 3b and 23 , which exist only in the (Z,Z)‐configuration, obviously for steric reasons, cannot be oxidized by DDQ. Electrochemical studies are in agreement with these results.  相似文献   

11.
4‐Arylisocoumarins (=4‐aryl‐1H‐2‐benzopyran‐1‐ones) 6 were prepared from 2‐(1‐aryl‐2‐methoxyethenyl)‐1‐bromobenzenes 1 . Successive treatment of these bromo styrenes with BuLi and 1‐formylpiperidine gave a mixture of (E)‐ and (Z)‐2‐(1‐aryl‐2‐methoxyethenyl)benzaldehydes 2 . Hydrolysis of (Z)‐isomers with conc. HBr, followed by pyridinium chlorochromate (PCC) oxidation of the resulting 1H‐2‐benzopyran‐1‐ol derivatives 4 (and 5 ), afforded the desired products.  相似文献   

12.
The one‐pot sequential synthesis of (?)‐oseltamivir has been achieved without evaporation or solvent exchange in 36 % yield over seven reactions. The key step was the asymmetric Michael reaction of pentan‐3‐yloxyacetaldehyde with (Z)‐N‐2‐nitroethenylacetamide, catalyzed by a diphenylprolinol silyl ether. The use of a bulky O‐silyl‐substituted diphenylprolinol catalyst, chlorobenzene as a solvent, and HCO2H as an acid additive, were key to produce the first Michael adduct in both excellent yield and excellent diastereo‐ and enantioselectivity. Investigation into the effect of acid demonstrated that an acid additive accelerates not only the EZ isomerization of the enamines derived from pentan‐3‐yloxyacetaldehyde with diphenylprolinol silyl ether, but also ring opening of the cyclobutane intermediate and the addition reaction of the enamine to (Z)‐N‐2‐nitroethenylacetamide. The transition‐state model for the Michael reaction of pentan‐3‐yloxyacetaldehyde with (Z)‐N‐2‐nitroethenylacetamide was proposed by consideration of the absolute configuration of the major and minor isomers of the Michael product with the results of the Michael reaction of pentan‐3‐yloxyacetaldehyde with phenylmaleimide and naphthoquinone.  相似文献   

13.
The cycloaddition of organic azides with some conjugated enamines of the 2‐amino‐1,3‐diene, 1‐amino‐1,3‐diene, and 2‐aminobut‐1‐en‐3‐yne type is investigated. The 2‐morpholinobuta‐1,3‐diene 1 undergoes regioselective [3+2] cycloaddition with several electrophilic azides RN3 2 ( a , R=4‐nitrophenyl; b , R=ethoxycarbonyl; c , R=tosyl; d , R=phenyl) to form 5‐alkenyl‐4,5‐dihydro‐5‐morpholino‐1H‐1,2,3‐triazoles 3 which are transformed into 1,5‐disubstituted 1H‐triazoles 4a , d or α,β‐unsaturated carboximidamide 5 (Scheme 1). The cycloaddition reaction of 4‐[(1E,3Z)‐3‐morpholino‐4‐phenylbuta‐1,3‐dienyl]morpholine ( 7 ) with azide 2a occurs at the less‐substituted enamine function and yields the 4‐(1‐morpholino‐2‐phenylethenyl)‐1H‐1,2,3‐triazole 8 (Scheme 2). The 1,3‐dipolar cycloaddition reaction of azides 2a – d with 4‐(1‐methylene‐3‐phenylprop‐2‐ynyl)morpholine ( 9 ) is accelerated at high pressure (ca. 7–10 kbar) and gives 1,5‐disubstituted dihydro‐1H‐triazoles 10a , b and 1‐phenyl‐5‐(phenylethynyl)‐1H‐1,2,3‐triazole ( 11d ) in significantly improved yields (Schemes 3 and 4). The formation of 11d is also facilitated in the presence of an equimolar quantity of tBuOH. The three‐component reaction between enamine 9 , phenyl azide, and phenol affords the 5‐(2‐phenoxy‐2‐phenylethenyl)‐1H‐1,2,3‐triazole 14d .  相似文献   

14.
An (E)/(Z) mixture (3 : 2) of 7‐benzylidenecycloocta‐1,3,5‐triene ( 5 ) is obtained when 1‐benzylcycloocta‐1,3,5,7‐tetraene ( 7 ), prepared by an improved procedure, is treated with t‐BuOK in THF. Alternatively, a ca. 9 : 1 mixture (E)/(Z)‐ 5 can be prepared in a Wittig reaction involving benzaldehyde and cycloocta‐2,4,6‐trien‐1‐ylidenetriphenylphoshorane ( 9 ). Treatment of (E)/(Z)‐ 5 88 : 12 with ethenetetracarbonitrile (TCNE) gave a complex mixture of products, from which seven mono‐adducts and two bis‐adducts were isolated (Sect. 2.2.1). Of the mono‐adducts, four are π4+π2 adducts: two ((E)‐ and (Z)‐isomers) are derived from valence tautomers of the two isomers of (E)/(Z)‐ 5 , while it is tentatively suggested that the other two (again (E)‐ and (Z)‐isomers) are formed from the intermediacy of a pentadienyl zwitterion (Sect. 2.3). The remaining three mono‐adducts, two of which are epimers, are π8+π2 adducts. It is suggested that they are derived from the intermediacy of homotropylium zwitterions (Sect. 2.3). For the two bis‐adducts, it is postulated that they are derived from an initial π2+π2 cycloaddition involving the homotropylium zwitterions followed by π4+π2 cycloaddition to the valence tautomer of each of the π2+π2 cycloadducts. With 4‐phenyl‐3H‐1,2,4‐triazole‐3,5(4H)‐dione ( 6 ), (E)/(Z)‐ 5 91 : 9 yielded two π4+π2 cycloadducts ((E)‐ and (Z)‐isomers) as well as two epimeric π8+π2 cycloadducts (Sect. 2.2.2). The intermediacy of pentadienyl (tentative suggestion) and homotropylium zwitterions accounts for the formation of the products (Sect. 2.3).  相似文献   

15.
The photoinduced reaction of a mixture of (Z)‐α‐cyano‐β‐bromomethylcinnamide (1) and (E)‐α‐cyano‐β‐bromomethylcinnamide (2) with 1‐benzyl‐1, 4‐dihydronicotinamide produces a mixture of the (E)‐ and (Z)‐ isomers of α‐cyano‐β‐methylcinnamide (3 and 4). Using spin‐trapping technique for monitoring reactive intermediate, it is shown that the reaction proceeds via electron transfer‐debromination‐H abstraction mechanism. The thermal reaction of the same substrate with BNAH at 60°C in the dark gives three products: the (E)‐ and (Z)‐isomers of α‐cyano‐β‐methylcinnamide and a dehydrodimeric product; 2, 7‐dicyano‐3, 6‐diphenylocta‐2, 4, 6‐trien‐1, 8‐dioic amide (7). Based on product analysis, scavenger experiment and cyclic voltammetry, an electron transfer‐debromination‐disproportionation mechanism is proposed.  相似文献   

16.
The known glucaro‐1,5‐lactam 8 , its diastereoisomers 9 – 11 , and the tetrahydrotetrazolopyridine‐5‐carboxylates 12 – 14 were synthesised as potential inhibitors of β‐D ‐glucuronidases and α‐L ‐iduronidases. The known 2,3‐di‐O‐benzyl‐4,6‐O‐benzylidene‐D ‐galactose ( 16 ) was transformed into the D ‐galactaro‐ and L ‐altraro‐1,5‐lactams 9 and 11 via the galactono‐1,5‐lactam 21 in twelve steps and in an overall yield of 13 and 2%, respectively. A divergent strategy, starting from the known tartaric anhydride 41 , led to the D ‐glucaro‐1,5‐lactam 8 , D ‐galactaro‐1,5‐lactam 9 , L ‐idaro‐1,5‐lactam 10 , and L ‐altraro‐1,5‐lactam 11 in ten steps and in an overall yield of 4–20%. The anhydride 41 was transformed into the L ‐threuronate 46 . Olefination of 46 to the (E)‐ or (Z)‐alkene 47 or 48 followed by reagent‐ or substrate‐controlled dihydroxylation, lactonisation, azidation, reduction, and deprotection led to the lactams 8 – 11 . The tetrazoles 12 – 14 were prepared in an overall yield of 61–81% from the lactams 54, 28 , and 67 , respectively, by treatment with Tf2O and NaN3, followed by saponification, esterification, and hydrogenolysis. The lactams 8 – 11 and 40 and the tetrazoles 12 – 14 are medium‐to‐strong inhibitors of β‐D ‐glucuronidase from bovine liver. Only the L ‐ido‐configured lactam 10 (Ki = 94 μM ) and the tetrazole 14 (Ki = 1.3 mM ) inhibit human α‐L ‐iduronidase.  相似文献   

17.
The reaction of the 4‐hydroxyquinoline‐3‐carboxylate 6 with pentaerythritol tribromide gave the 1,1′‐(2‐methylenepropane‐1,3‐diyl)di(4‐quinolone‐3‐carboxylate) 11 , whose reaction with bromine afforded the 1,1′‐(2‐bromo‐2‐bromomethylpropane‐1,3‐diyl)di(4‐quinolone‐3‐carboxylate) 12 . Compound 12 was transformed into the (Z)‐1,1′‐(2‐acetoxymethylpropene‐1,3‐diyl)di(4‐quinolone‐3‐carboxylate) 13 or (E)‐1,1′‐[2‐(imidazol‐1‐ylmethyl)propene‐1,3‐diyl]di(4‐quinolone‐3‐carboxylate) 14 . Hydrolysis of the dimer (Z)‐ 13 or (E)‐ 14 with potassium hydroxide provided the (E)‐1,1′‐(2‐hydroxymethylpropene‐1,3‐diyl)di(4‐quinolone‐3‐carboxylic acid) 15 or (Z)‐1,1′‐[2‐(imidazol‐1‐ylmethyl)propene‐1,3‐diyl]di(4‐quinolone‐3‐carboxylic acid) 16 , respectively. The nuclear Overhauser effect (NOE) spectral data supported that those hydrolysis resulted in the geometrical conversion of (Z)‐ 13 into (E)‐ 15 or (E)‐ 14 into (Z)‐ 16 .  相似文献   

18.
3′‐Epilutein (=(all‐E,3R,3′S,6′R)‐4′,5′‐didehydro‐5′,6′‐dihydro‐β,β‐carotene‐3,3′‐diol; 1 ), isolated from the flowers of Caltha palustris, was submitted to both thermal isomerization and I2‐catalyzed photoisomerization. The structures of the main products (9Z)‐ 1 , (9′Z)‐ 1 , (13Z)‐ 1 , (13′Z)‐ 1 , (15Z)‐ 1 , and (9Z,9′Z)‐ 1 were determined based on UV/VIS, CD, 1H‐NMR, and MS data.  相似文献   

19.
The structures of iminium salts formed from diarylprolinol or imidazolidinone derivatives and α,β‐unsaturated aldehydes have been studied by X‐ray powder diffraction (Fig. 1), single‐crystal X‐ray analyses (Table 1), NMR spectroscopy (Tables 2 and 3, Figs. 2–7), and DFT calculations (Helv. Chim. Acta 2009 , 92, 1, 1225, 2010 , 93, 1; Angew. Chem., Int. Ed. 2009 , 48, 3065). Almost all iminium salts of this type exist in solution as diastereoisomeric mixtures with (E)‐ and (Z)‐configured +NC bond geometries. In this study, (E)/(Z) ratios ranging from 88 : 12 up to 98 : 2 (Tables 2 and 3) and (E)/(Z) interconversions (Figs. 2–7) were observed. Furthermore, the relative rates, at which the (E)‐ and (Z)‐isomers are formed from ammonium salts and α,β‐unsaturated aldehydes, were found to differ from the (E)/(Z) equilibrium ratio in at least two cases (Figs. 4 and 5, a, and Fig. 6, a); more (Z)‐isomer is formed kinetically than corresponding to its equilibrium fraction. Given that the enantiomeric product ratios observed in reactions mediated by organocatalysts of this type are often ≥99 : 1, the (E)‐iminium‐ion intermediates are proposed to react with nucleophiles faster than the (Z)‐isomers (Scheme 5 and Fig. 8). Possible reasons for the higher reactivity of (E)‐iminium ions (Figs. 8 and 9) and for the kinetic preference of (Z)‐iminium‐ion formation are discussed (Scheme 4). The results of related density functional theory (DFT) calculations are also reported (Figs. 10–13 and Table 4).  相似文献   

20.
A number of aryl 3‐arylprop‐2‐ynoates 3 has been prepared (cf. Table 1 and Schemes 3 – 5). In contrast to aryl prop‐2‐ynoates and but‐2‐ynoates, 3‐arylprop‐2‐ynoates 3 (with the exception of 3b ) do not undergo, by flash vacuum pyrolysis (FVP), rearrangement to corresponding cyclohepta[b]furan‐2(2H)‐ones 2 (cf. Schemes 1 and 2). On melting, however, or in solution at temperatures >150°, the compounds 3 are converted stereospecifically to the dimers 3‐[(Z)‐diarylmethylidene]‐2,3‐dihydrofuran‐2‐ones (Z)‐ 11 and the cyclic anhydrides 12 of 1,4‐diarylnaphthalene‐2,3‐dicarboxylic acids, which also represent dimers of 3 , formed by loss of one molecule of the corresponding phenol from the aryloxy part (cf. Scheme 6). Small amounts of diaryl naphthalene‐2,3‐dicarboxylates 13 accompanied the product types (Z)‐ 11 and 12 , when the thermal transformation of 3 was performed in the molten state or at high concentration of 3 in solution (cf. Tables 2 and 4). The structure of the dihydrofuranone (Z)‐ 11c was established by an X‐ray crystal‐structure analysis (Fig. 1). The structures of the dihydrofuranones 11 and the cyclic anhydrides 12 indicate that the 3‐arylprop‐2‐ynoates 3 , on heating, must undergo an aryl O→C(3) migration leading to a reactive intermediate, which attacks a second molecule of 3 , finally under formation of (Z)‐ 11 or 12 . Formation of the diaryl dicarboxylates 13 , on the other hand, are the result of the well‐known thermal Diels‐Alder‐type dimerization of 3 without rearrangement (cf. Scheme 7). At low concentration of 3 in decalin, the decrease of 3 follows up to ca. 20% conversion first‐order kinetics (cf. Table 5), which is in agreement with a monomolecular rearrangement of 3 . Moreover, heating the highly reactive 2,4,6‐trimethylphenyl 3‐(4‐nitrophenyl)prop‐2‐ynonate ( 3f ) in the presence of a twofold molar amount of the much less reactive phenyl 3‐(4‐nitrophenyl)prop‐2‐ynonate ( 3g ) led, beside (Z)‐ 11f , to the cross products (Z)‐ 11fg , and, due to subsequent thermal isomerization, (E)‐ 11fg (cf. Scheme 10), the structures of which indicated that they were composed, as expected, of rearranged 3f and structurally unaltered 3g . Finally, thermal transposition of [17O]‐ 3i with the 17O‐label at the aryloxy group gave (Z)‐ and (E)‐[17O2]‐ 11i with the 17O‐label of rearranged [17O]‐ 3i specifically at the oxo group of the two isomeric dihydrofuranones (cf. Scheme 8), indicating a highly ordered cyclic transition state of the aryl O→C(3) migration (cf. Scheme 9).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号