共查询到20条相似文献,搜索用时 15 毫秒
1.
Diran Herebian Jeong‐Heui Choi A. M. Abd El‐Aty Jae‐Han Shim Michael Spiteller 《Biomedical chromatography : BMC》2009,23(9):951-965
The metabolic profile of polar (methanol) and non‐polar (hexane) extracts of Curcuma domestica, a widely used medicinal plant, was established using various different analytical techniques, including GC‐FID, GC‐MS, HR‐GC‐MS and analytical HPLC‐ESI‐MS/MS by means of LTQ‐Orbitrap technology. The major non‐volatile curcuminoids curcumin, demethoxycurcumin and bisdemethoxycurcumin were identified when their chromatographic and precursor ion masses were compared with those of authentic standard compounds. In this paper we describe for the first time a GC/MS‐based method for metabolic profiling of the hydrophilic extract. We also identified 61 polar metabolites as TMS derivatives. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
2.
In vitro and in vivo identification of metabolites of magnoflorine by LC LTQ‐Orbitrap MS and its potential pharmacokinetic interaction in Coptidis Rhizoma decoction in rat 下载免费PDF全文
Baojuan Xue Yuanyuan Zhao Qing Miao Peipei Miao Xiaoyan Yang Guixia Sun Jin Su Jing Ye Baohong Wei Yuanyuan Zhang Yujie Zhang 《Biomedical chromatography : BMC》2015,29(8):1235-1248
Magnoflorine, an important aporphine alkaloid in Coptidis Rhizoma, is increasingly attracting research attention because of its pharmacological activities. The in vivo and in vitro metabolism of magnoflorine was investigated by LC LTQ‐Orbitrap MS. In vivo samples including rat urine, feces, plasma and bile were collected separately after both oral (50 mg kg?1) and intravenous administration (10 mg kg?1) of magnoflorine, along with in vitro samples prepared by incubating magnoflorine with rat intestinal flora and liver microsome. As a result, 12 metabolites were found in biological samples. Phase I metabolites were identified in all biological samples, while phase II metabolites were mainly detected in urine, plasma and bile. In a pharmacokinetic study, rats were not only dosed with magnoflorine via oral (15, 30 and 60 mg kg?1) and intravenous administration (10 mg kg?1) but also dosed with Coptidis Rhizoma decoction (equivalent to 30 mg kg?1 of magnoflorine) by intragastric administration to investigate the interaction of magnoflorine with the rest of compounds in Coptidis Rhizoma. Studies showed that magnoflorine possessed lower bioavailability and faster absorption and elimination. However, pharmacokinetic parameters altered significantly (p < 0.05) when magnoflorine was administered in Coptidis Rhizoma decoction. Oral gavage of Coptidis Rhizoma decoction decreased the absorption and elimination rates of magnoflorine, which revealed that there existed pharmacokinetic interactions between magnoflorine and the rest of ingredients in Coptidis Rhizoma. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
Development and validation of a high‐resolution LTQ Orbitrap MS method for the quantification of isoflavones in wastewater effluent 下载免费PDF全文
Michael G. Cahill Serena Logrippo Brian A. Dineen Kevin J. James Giovanni Caprioli 《Journal of mass spectrometry : JMS》2015,50(1):112-116
Isoflavones and coumestranes are the most important classes of compounds among phytoestrogens; by binding to estrogen receptors, they mimic or modulate the effect on the endogenous receptors. Little information can be found in literature about the presence of isoflavones and coumestrol in the environment, even if it is known that this may have significance, being these substances classified as endocrine disrupting compounds. In this research, we aim to explore the capabilities of the LTQ Orbitrap Discovery hybrid MS in full‐scan acquisition mode, with high resolution, to validate an analytical method for the quantification of nine isoflavones (genistein, genistin, glycitein, daidzein, daidzin, (R,S)‐equol, biochanin A, formononetin and coumestrol) in wastewater samples. The correlation coefficients of calibration curves of the nine analyzed compounds were in a range of 0.996–0.999; recoveries at two different levels of concentration (0.05 and 0.5 µg/l) were in the range 73–98%, and the limits of detection ranged between 0.0014 and 0.017 µg/l, proving that this method is sensitive enough in comparison with other methods available in literature. This method has been applied for the analysis of 20 wastewater treatment plants in County Cork, Ireland. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
Ivette M. Menndez‐Perdomo Jillian M. Hagel Peter J. Facchini 《Journal of mass spectrometry : JMS》2021,56(2)
Benzylisoquinoline alkaloids (BIAs) have profound implications on human health owing to their potent pharmacological properties. Notable naturally occurring BIAs are the narcotic analgesics morphine, the cough suppressant codeine, the potential anticancer drug noscapine, the muscle relaxant papaverine, and the antimicrobial sanguinarine, all of which are produced in opium poppy (Papaver somniferum). Thebaine, an intermediate in the biosynthesis of codeine and morphine, is used in the manufacture of semisynthetic opiates, including oxycodone and naloxone. As the only commercial source of pharmaceutical opiates, opium poppy has been the focus of considerable research to understand BIA metabolism in the plant. The elucidation of several BIA biosynthetic pathways has enabled the development of synthetic biology platforms aimed at the alternative commercial production of valuable phytochemicals in microorganisms. The detection and identification of BIA pathway products and intermediates in complex extracts is essential for the continuing advancement of research in plant specialized metabolism and microbial synthetic biology. Herein, we report the use of liquid chromatography coupled with linear trap quadrupole and high‐resolution Orbitrap multistage mass spectrometry to characterize 44 authentic BIAs using collision‐induced dissociation (CID), higher‐energy collisional dissociation (HCD), and pulsed Q collision‐induced dissociation (PQD) MS2 fragmentation, with MS2 CID followed by MS3 and MS4 fragmentation. Our deep library of diagnostic spectral data constitutes a valuable resource for BIAs identification. In addition, we identified 22 BIAs in opium poppy latex and roots extracts. 相似文献
5.
《Biomedical chromatography : BMC》2018,32(2)
The root of Polygonum multiflorum (PM) is an important Chinese herbal medicine for treatment of various diseases. Extensive pharmacological studies have been conducted and demonstrated that it shows a wide range of bioactivities. Meanwhile, a considerable number of hepatotoxicity cases owing to oral administration of PM have been reported and have attracted great attention. However, the limited knowledge regarding the metabolism of PM restricts the deeper studies on its pharmacological/toxicological mechanism and therapeutic material basis. The present study aimed to develop a high‐performance liquid chromatography coupled with a linear ion trap–Orbitrap hybrid mass spectrometry method for separation and identification of metabolites in rat urine and plasma after oral administration of PM. Based on the proposed strategy, metabolism profiles of PM in rats were proposed for the first time and 43 metabolites were characterized or tentatively identified. Phase II metabolism, such as glucuronidation and sulfation, are the principal pathways of the main components. These findings will be beneficial to further understanding of the pharmacological mechanism and pharmacodynamic material basis of PM. 相似文献
6.
R. Nageswara Rao R. Mastan Vali Dhananjay D. Shinde 《Biomedical chromatography : BMC》2009,23(11):1145-1150
A highly sensitive and selective on‐line two‐dimensional reversed‐phase liquid chromatography/electrospray ionization–tandem mass spectrometry (2D‐LC‐ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D‐LC‐ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5–10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
7.
Tian Liu Fuying Du Yakun Wan Fanping Zhu Jie Xing 《Journal of mass spectrometry : JMS》2011,46(8):725-733
Artemisinin drugs have become the first‐line antimalarials in areas of multi‐drug resistance. However, monotherapy with artemisinin drugs results in comparatively high recrudescence rates. Autoinduction of CYP‐mediated metabolism, resulting in reduced exposure, has been supposed to be the underlying mechanism. To better understand the autoinduction of artemisinin drugs, we evaluated the biotransformation of artemisinin, also known as Qing‐hao‐su (QHS), and its active derivative dihydroartemisinin (DHA) in vitro and in vivo, using LTQ‐Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange high‐resolution (HR)‐LC/MS (mass spectrometry) for rapid structural characterization. The LC separation was improved allowing the separation of QHS parent drugs and their metabolites from their diastereomers. Thirteen phase I metabolites of QHS have been identified in liver microsomal incubates, rat urine, bile and plasma, including six deoxyhydroxylated metabolites, five hydroxylated metabolites, one dihydroxylated metabolite and deoxyartemisinin. Twelve phase II metabolites of QHS were detected in rat bile, urine and plasma. DHA underwent similar metabolic pathways, and 13 phase I metabolites and 3 phase II metabolites were detected. Accurate mass data were obtained in both full‐scan and MS/MS mode to support assignments of metabolite structures. Online H/D exchange LC‐HR/MS experiments provided additional evidence in differentiating deoxydihydroxylated metabolites from mono‐hydroxylated metabolites. The results showed that the main phase I metabolites of artemisinin drugs are hydroxylated and deoxyl products, and they will undergo subsequent phase II glucuronidation processes. This study also demonstrated the effectiveness of online H/D exchange LC‐HR/MSn technique in rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
《Biomedical chromatography : BMC》2018,32(5)
Forsythoside A (FTA), the main active constituent isolated from Fructus Forsythiae, has various biological functions including anti‐oxidant, anti‐viral and anti‐microbial activities. However, while research on FTA has been mainly focused on the treatment of diseases on a material basis, FTA metabolites in vivo have not been comprehensively evaluated. Here, a rapid and sensitive method using a UHPLC‐LTQ‐Orbitrap mass spectrometer with multiple data processing techniques including high‐resolution extracted ion chromatograms, multiple mass defect filters and diagnostic product ions was developed for the screening and identification of FTA metabolites in rats. As the result, a total of 43 metabolites were identified in biological samples including 42 metabolites in urine, 22 metabolites in plasma and 15 metabolites in feces. These results demonstrated that FTA underwent a series of in vivo metabolic reactions including methylation, dimethylation, sulfation, glucuronidation, diglucuronidation, cysteine conjugation and their composite reactions. The research enhanced our understanding of FTA metabolism and built a foundation for further toxicity and safety studies. 相似文献
9.
Peng Qi Mingsong Fan Zhixiong Li Mingcang Chen Zhaolin Sun Bin Wu Chenggang Huang 《Biomedical chromatography : BMC》2013,27(1):96-101
In order to illustrate the main biotransformation pathways of vaccarin in vivo, metabolites of vaccarin in rats were identified using a specific and sensitive high‐performance liquid chromatography–electrospray ionization linear ion trap mass spectrometry (LTQ XL?) method. The rats were administered a single dose (200 mg/kg) of vaccarin by oral gavage. By comparing their changes in molecular masses (ΔM), retention times and spectral patterns with those of the parent drug, the parent compound and six metabolites were found in rat urine after oral administration of vaccarin. The parent compound and five metabolites were detected in rat plasma. In heart, liver and kidney samples, respectively, one, four and three metabolites were identified, in addition to the parent compound. Three metabolites, but no trace of parent drug, were found in the rat feces. This is the first systematic metabolism study of vaccarin in vivo. The biotransformation pathways of vaccarin involved methylation, hydroxylation, glycosylation and deglycosylation. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
10.
Pankaj Kisan Chatki Kishore Kumar Hotha Pandu Ranga Reddy Kolagatla D. Vijaya Bharathi V. Venkateswarulu 《Biomedical chromatography : BMC》2013,27(7):838-845
A robust, specific and fully validated LC‐MS/MS method as per general practices of industry has been developed for estimation of lacidipine (LAC) with 100 μL of human plasma using lacidipine‐13C8 as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode. A simple liquid–liquid extraction process was used to extract LAC and IS from human plasma. The total run time was 3.0 min and the elution of LAC and IS occurred at 1.96 and 1.97 min; this was achieved with a mobile phase consisting of 5 mm ammonium acetate buffer–acetontrile (15:85 v/v) at a flow rate of 0.60 mL/min on a Zorbax SB C18 (50 × 4.6 mm, 5 µm) column. A linear response function was established for the range of concentrations 50–15,000 pg/mL (r > 0.998) for LAC. The current developed method has negligible matrix effect and is free from unwanted adducts and clusters which are formed owing to system such as solvent or mobile phase. The developed assay method was applied to an oral pharmacokinetic study in humans and successfully characterized the pharmacokinetic data up to 72 h. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
11.
A novel LC‐MS/MS method for determination of tissue distribution and excretion of timosaponin B‐II in rat biological matrices 下载免费PDF全文
Fei Cai Feng Zhang Wei Jiang Xiaowei Liu Wansheng Chen 《Biomedical chromatography : BMC》2014,28(7):1011-1016
Timosaponin B‐II (TB‐II) is a natural bioactive steroid glycoside extracted from the Chinese medicinal herb Anemarrhena asphodeloides Bge. (Fam. Liliaceae). It has been demonstrated to have a good anti‐inflammatory effect and a low bioavailability (1.1%). Clinical research has focused on developing it into a completely new medicine. In this study, a rapid and sensitive analytical method based on LC‐MS/MS has been developed for the determination of TB‐II in rat biological matrices (tissues, bile, urine and feces samples). The analytes and internal standard were isolated from 100 μL samples by solid‐phase extraction and then separated using a DIKMA Inertsil ODS‐3 column (5 µm, 2.1 × 150 mm) with an isocratic mobile phase consisting of acetonitrile–0.05% formic acid (35:65) at a flow rate of 0.25 mL/min. Calibration curves (1/χ2‐weighted) offered satisfactory linearity (r2 ≥ 0.990) within the test range. The accuracy, precision, recoveries and matrix effects were satisfactory in all the biological matrices examined. The assay was successfully applied to a tissue distribution and excretion study in rats. The preclinical data are useful for the design of clinical trials of TB‐II. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
Melissa D. Carter M. Wade Calcutt Beth A. Malow Kristie L. Rose David L. Hachey 《Journal of mass spectrometry : JMS》2012,47(3):277-285
Melatonin (MEL) and its chemical precursor N‐acetylserotonin (NAS) are believed to be potential biomarkers for sleep‐related disorders. Measurement of these compounds, however, has proven to be difficult due to their low circulating levels, especially that of NAS. Few methods offer the sensitivity, specificity and dynamic range needed to monitor MEL and its precursors and metabolites in small blood samples, such as those obtained from pediatric patients. In support of our ongoing study to determine the safety, tolerability and PK dosing strategies for MEL in treating insomnia in children with autism spectrum disorder, two highly sensitive LC‐MS/MS assays were developed for the quantitation of MEL and precursor NAS at pg/mL levels in small volumes of human plasma. A validated electrospray ionization (ESI) method was used to quantitate high levels of MEL in PK studies, and a validated nanospray (nESI) method was developed for quantitation of MEL and NAS at endogenous levels. In both assays, plasma samples were processed by centrifugal membrane dialysis after addition of stable isotopic internal standards, and the components were separated by either conventional LC using a Waters SymmetryShield RP18 column (2.1 × 100 mm, 3.5 µm) or on a polyimide‐coated, fused‐silica capillary self‐packed with 17 cm AquaC18 (3 µm, 125 Å). Quantitation was done using the SRM transitions m/z 233 → 174 and m/z 219 → 160 for MEL and NAS, respectively. The analytical response ratio versus concentration curves were linear for MEL (nanoflow LC: 11.7–1165 pg/mL, LC: 1165–116500 pg/mL) and for NAS (nanoflow LC: 11.0–1095 pg/mL). Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
13.
《Journal of mass spectrometry : JMS》2018,53(8):ii-ii
Quadrupole Orbitrap instruments (Q Orbitrap) permit high‐resolution mass spectrometry‐based full scan acquisitions and have a number of acquisition modes where the quadrupole isolates a particular mass range prior to a possible fragmentation and high‐resolution mass spectrometry‐based acquisition. Selecting the proper acquisition mode(s) is essential if trace analytes are to be quantified in complex matrix extracts. Depending on the particular requirements, such as sensitivity, selectivity of detection, linear dynamic range, and speed of analysis, different acquisition modes may have to be chosen. This is particularly important in the field of multi‐residue analysis (eg, pesticides or veterinary drugs in food samples) where a large number of analytes within a complex matrix have to be detected and reliably quantified. Meeting the specific detection and quantification performance criteria for every targeted compound may be challenging. It is the aim of this paper to describe the strengths and the limitations of the currently available Q Orbitrap acquisition modes. In addition, the incorporation of targeted acquisitions between full scan experiments is discussed. This approach is intended to integrate compounds that require an additional degree of sensitivity or selectivity into multi‐residue methods. 相似文献
14.
Selvan Ravindran Sudipta Basu Santosh Kapil Kumar Gorti Prashant Surve Navya Sloka 《Biomedical chromatography : BMC》2013,27(5):575-582
The sulfonylurea urea drug glyburide (glibenclamide) is widely used for the treatment of diabetes milletus and gestational diabetes. In previous studies monohydroxylated metabolites were identified and characterized for glyburide in different species, but the metabolite owing to the loss of cyclohexyl ring was identified only in mouse. Glyburide upon incubation with hepatic microsomes resulted in 10 metabolites for human. The current study identifies new metabolites of glyburide along with the hydroxylated metabolites that were reported earlier. The newly identified drug metabolites are dihydroxylated metabolites, a metabolite owing to the loss of cyclohexyl ring and one owing to hydroxylation with dehydrogenation. Among the 10 identified metabolites, there were six monohydroxylated metabolites, one dihydroxylated metabolite, two metabolites owing to hydroxylation and dehydrogenation, and one metabolite owing to the loss of cyclohexyl ring. New metabolites of glyburide were identified and characterized using liquid chromatography–diode array detector–quadruple‐ion trap–mass spectrometry/mass spectrometry (LC‐DAD‐Q‐TRAP‐MS/MS). An enhanced mass scan–enhanced product ion scan with information‐dependent acquisition mode in a Q‐TRAP‐MS/MS system was used to characterize the metabolites. Liquid chromatography with diode array detection was used as a complimentary technique to confirm and identify the metabolites. Metabolites formed in higher amounts were detected in both diode array detection and mass spectrometry detection. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
15.
Sensitive LC‐MS/MS‐ESI method for simultaneous determination of montelukast and fexofenadine in human plasma: application to a bioequivalence study 下载免费PDF全文
Rajendraprasad Muppavarapu Swati Guttikar Manavalan Rajappan Kannan Kamarajan Ramesh Mullangi 《Biomedical chromatography : BMC》2014,28(8):1048-1056
A rapid, simple, sensitive and selective LC‐MS/MS method was developed and validated for simultaneous quantification of montelukast (MT) and fexofenadine (FF) in human plasma (200 μL) using montelukast‐d6 (MT‐d6) and fexofenadine‐d10 (FF‐d10), respectively as an internal standard (IS) as per the US Food and Drug Administration guidelines. The chromatographic resolution was achieved on a Chromolith RP18e column using an isocratic mobile phase consisting of 20 mm ammonium formate–acetonitrile (20:80, v/v) at flow rate of 1.2 mL/min. The LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. The total run time of analysis was 4 min and elution of MT, FF, MT‐d6 and FF‐d10 occurred at 2.5, 1.2, 2.4 and 1.2 min, respectively. The standard curve found to be linear in the range 2.00–1000 ng/mL with a coefficient of correlation of ≥0.99 for both the drugs. The intra‐ and inter‐day accuracy and precision values for MT and FF met the acceptance as per FDA guidelines. MT and FF were found to be stable in a battery of stability studies viz., bench‐top, auto‐sampler and repeated freeze‐thaw cycles. The validated assay was applied to an oral bioequivalence study in humans. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
Juanjuan Jiang Lei Tian Yiling Huang Yishi Li 《Biomedical chromatography : BMC》2013,27(12):1603-1608
A sensitive, rapid assay method for estimating ivabradine in human plasma has been developed and validated using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The procedure involved extraction of ivabradine and the internal standard (IS) from human plasma by solid‐phase extraction. Chromatographic separation was achieved using an isocratic mobile phase (0.1% formic acid–methanol, 60:40, v/v) at a flow rate of 1.0 mL/min on an Aglient Eclipse XDB C8 column (150 × 4.6 mm, 5 µm; maintained at 35°C) with a total run time of 4.5 min. Detection was achieved using an Applied Biosystems MDS Sciex (Concord, Ontario, Canada) API 3200 triple‐quadrupole mass spectrometer. The MS/MS ion transitions monitored were 469–177 for ivabradine and 453–177 for IS. Method validation was performed according to Food and Drug Administration guidelines, and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 0.1–200 ng/mL. The lower limit of quantitation achieved was 0.1 ng/mL. Intra‐ and inter‐day precisions were in the range of 1.23–14.17% and 5.26‐8.96%, respectively. Finally, the method was successfully used in a pharmacokinetic study that measured ivabradine levels in healthy volunteers after a single 5 mg oral dose of ivabradine. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
17.
Kuldeep Sharma Gopal Pawar Swetha Yadam Sanjeev Giri Sriram Rajagopal Ramesh Mullangi 《Biomedical chromatography : BMC》2013,27(3):356-364
A highly sensitive and specific LC‐MS/MS‐ESI method has been developed for simultaneous quantification of metformin (MFN) and repaglinide (RGN) in rat plasma (50 μL) using phenacetin as an internal standard (IS). Simple protein precipitation was used to extract MFN and RGN from rat plasma. The chromatographic resolution of MFN, RGN and IS was achieved with a mobile phase consisting of 0.2% formic acid in water–acetonitrile (1:1, v/v) with a time program flow gradient on a Chromolith RP‐18e column. The total chromatographic run time was 3.5 min and the elution of MFN, RGN and IS occurred at 1.64, 2.21 and 2.15 min, respectively. A linear response function was established for the range of concentrations 0.855–394 and 0.021–21.7 ng/mL for MFN and RGN, respectively. The intra‐ and inter‐day precision values for MFN and RGN met the acceptance as per FDA guidelines. MFN and RGN were stable in battery of stability studies viz., bench‐top, auto‐sampler and freeze–thaw cycles. The developed assay was applied to a pharmacokinetic study in rats. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
18.
《Biomedical chromatography : BMC》2017,31(11)
A quick, easy, effective method followed by ultra‐high‐pressure liquid chromatography coupled with linear ion trap–Orbitrap tandem mass spectrometry (UHPLC‐LTQ‐Orbitrap MS) was developed for the simultaneous identification and quantification of the metabolites produced by amentoflavone (AMF) in human intestinal bacteria from human feces. The method validated for quantification of AMF concerning precision, accuracy, recovery, matrix effect, stability and limits showed acceptable results. Compared with blank human intestinal bacteria chromatography, three metabolites were identified based on high‐accuracy protonated precursors and multi‐stage mass spectrometry (MSn ) using the proposed strategy. At the same time, a new method was developed for semi‐quantification of three metabolites. We describe the trend over 24 h of concentration–time curves for AMF and its metabolites. Moreover, the main metabolic pathway of AMF was clarified in human intestinal bacteria. The method was validated and successfully applied to the detection and quantification of AMF and its metabolites. 相似文献
19.
Combined quantification of paclitaxel,docetaxel and ritonavir in human feces and urine using LC‐MS/MS 下载免费PDF全文
Jeroen J. M. A. Hendrikx Hilde Rosing Alfred H. Schinkel Jan H. M. Schellens Jos H. Beijnen 《Biomedical chromatography : BMC》2014,28(2):302-310
A combined assay for the determination of paclitaxel, docetaxel and ritonavir in human feces and urine is described. The drugs were extracted from 200 μL urine or 50 mg feces followed by high‐performance liquid chromatography analysis coupled with positive ionization electrospray tandem mass spectrometry. The validation program included calibration model, accuracy and precision, carry‐over, dilution test, specificity and selectivity, matrix effect, recovery and stability. Acceptance criteria were according to US Food and Drug Administration guidelines on bioanalytical method validation. The validated range was 0.5–500 ng/mL for paclitaxel and docetaxel, 2–2000 ng/mL for ritonavir in urine, 2–2000 ng/mg for paclitaxel and docetaxel, and 8–8000 ng/mg for ritonavir in feces. Inter‐assay accuracy and precision were tested for all analytes at four concentration levels and were within 8.5% and <10.2%, respectively, in both matrices. Recovery at three concentration levels was between 77 and 94% in feces samples and between 69 and 85% in urine samples. Method development, including feces homogenization and spiking blank urine samples, are discussed. We demonstrated that each of the applied drugs could be quantified successfully in urine and feces using the described assay. The method was successfully applied for quantification of the analytes in feces and urine samples of patients. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献