首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural and dynamical properties of high-spin Ru2+ in aqueous solution have been theoretically studied using molecular dynamics (MD) simulations. The conventional MD simulation based on pair potentials gives the overestimated average first shell coordination number of 9, whereas the value of 5.9 was observed when the three-body corrected function was included. A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to take into account the many-body effects on the hydration shell structure of Ru2+. The most important region, the first hydration shell, was treated by ab initio quantum mechanics at UHF level using the SBKJC VDZ ECP basis set for Ru2+ and the 6-31G basis sets for water. An exact coordination number of 6 for the first hydration shell was obtained from the QM/MM simulation. The QM/MM simulation predicts the average Ru2+–O distance of 2.42 Å for the first hydration shell, whereas the values of 2.34 and 2.46 Å are resulted from the pair potentials without and with the three-body corrected simulations, respectively. Several other structural properties representing position and orientation of the solvate molecules were evaluated for describing the hydration shell structure of the Ru2+ ion in dilute aqueous solution. A mean residence time of 7.1 ps was obtained for water ligands residing in the second hydration shell.  相似文献   

2.
Born‐Oppenheimer ab initio QM/MM molecular dynamics simulation with umbrella sampling is a state‐of‐the‐art approach to calculate free energy profiles of chemical reactions in complex systems. To further improve its computational efficiency, a mass‐scaling method with the increased time step in MD simulations has been explored and tested. It is found that by increasing the hydrogen mass to 10 amu, a time step of 3 fs can be employed in ab initio QM/MM MD simulations. In all our three test cases, including two solution reactions and one enzyme reaction, the resulted reaction free energy profiles with 3 fs time step and mass scaling are found to be in excellent agreement with the corresponding simulation results using 1 fs time step and the normal mass. These results indicate that for Born‐Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, the mass‐scaling method can significantly reduce its computational cost while has little effect on the calculated free energy profiles. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

3.
The quantum mechanical (QM)/molecular mechanical (MM) interface between Chemistry at HARvard Molecular Mechanics (CHARMM) and TURBOMOLE is described. CHARMM provides an extensive set of simulation algorithms, like molecular dynamics (MD) and free energy perturbation, and support for mature nonpolarizable and Drude polarizable force fields. TURBOMOLE provides fast QM calculations using density functional theory or wave function methods and excited state properties. CHARMM–TURBOMOLE is well‐suited for extended QM/MM MD simulations using first principles methods with large (triple‐ζ) basis sets. We demonstrate these capabilities with a QM/MM simulation of Mg2+(aq), where the MM outer sphere water molecules are represented using the SWM4‐NDP Drude polarizable force field and the ion and inner coordination sphere are represented using QM PBE, PBE0, and MP2 methods. The relative solvation free energies of Mg2+ and Zn2+ were calculated using thermodynamic integration. We also demonstrate the features for excited state properties. We calculate the time‐averaged solution absorption spectrum of indole, the emission spectrum of the indole excited state, and the electronic circular dichroism spectrum of an oxacepham. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
The CuII hydration shell structure has been studied by means of classical molecular dynamics (MD) simulations including three-body corrections and hybrid quantum-mechanical/molecular-mechanical (QM/MM) molecular dynamics (MD) simulations at the Hartree–Fock level. The copper(II ) ion is found to be six-fold coordinated and [Cu(H2O)6]2+ exhibits a distorted octahedral structure. The QM/MM MD approach reproduces correctly the experimentally observed Jahn–Teller effect but exhibits faster inversions (<200 fs) and a more complex behaviour than expected from experimental data. The dynamic Jahn–Teller effect causes the high lability of [Cu(H2O)6]2+ with a ligand-exchange rate constant some orders of magnitude higher than its neighbouring ions NiII and ZnII. Nevertheless, no first-shell water exchange occurred during a 30-ps simulation. The structure of the hydrated ion is discussed in terms of radial distribution functions, coordination numbers, and various angular distributions and the dynamical properties as librational and vibrational motions and reorientational times were evaluated, which lead to detailed information about the first hydration shell. Second-shell water-exchange processes could be observed within the simulation time scale and yielded a mean ligand residence time of ≈20 ps.  相似文献   

5.
The ab initio quantum mechanical charge field molecular dynamics (QMCF MD) formalism was applied to simulate the bicarbonate ion, HCO3?, in aqueous solution. The difference in coordination numbers obtained by summation over atoms (6.6) and for the solvent‐accessible surface (5.4) indicates the sharing of some water molecules between the individual atomic hydration shells. It also proved the importance to consider the hydration of the chemically different atoms individually for the evaluation of structural and dynamical properties of the ion. The orientation of water molecules in the hydration shell was visualized by the θ–tilt surface plot. The mean residence time in the surroundings of the HCO3? ion classify it generally as a structure‐breaking ion, but the analysis of the individual ion‐water hydrogen bonds revealed a more complex behavior of the different coordination sites. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

6.
管清梅  杨忠志 《中国化学》2007,25(6):727-735
A detailed theoretical investigation on Co^3+ hydration in aqueous solution has been carded out by means of molecular dynamics (MD) simulations based on the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). The effective Co^3+ ion-water potential has been constructed by fitting to ab initio structures and binding energies for ionic clusters. And then the ion-water interaction potential was applied in combination with the ABEEM-7P water model to molecular dynamics simulations of single Co^3+(aq.) solution, managing to reproduce many experimental structural and dynamical properties of the solution. Here, not only the common properties (radial distribution function, angular distribution function and solvation energy) obtained for Co^3+ in ABEEM-7P water solution were in good agreement with those from the experimental methods and other molecular dynamics simulations but also very interesting properties of charge distributions, geometries of water molecules, hydrogen bond, diffusion coefficients, vibrational spectra are investigated by ABEEM/MM model.  相似文献   

7.
To validate a method for predicting the binding affinities of FabI inhibitors, three implicit solvent methods, MM‐PBSA, MM‐GBSA, and QM/MM‐GBSA were carefully compared using 16 benzimidazole inhibitors in complex with Francisella tularensis FabI. The data suggests that the prediction results are sensitive to radii sets, GB methods, QM Hamiltonians, sampling protocols, and simulation length, if only one simulation trajectory is used for each ligand. In this case, QM/MM‐GBSA using 6 ns MD simulation trajectories together with GBneck2, PM3, and the mbondi2 radii set, generate the closest agreement with experimental values (r2 = 0.88). However, if the three implicit solvent methods are averaged from six 1 ns MD simulations for each ligand (called “multiple independent sampling”), the prediction results are relatively insensitive to all the tested parameters. Moreover, MM/GBSA together with GBHCT and mbondi, using 600 frames extracted evenly from six 0.25 ns MD simulations, can also provide accurate prediction to experimental values (r2 = 0.84). Therefore, the multiple independent sampling method can be more efficient than a single, long simulation method. Since future scaffold expansions may significantly change the benzimidazole's physiochemical properties (charges, etc.) and possibly binding modes, which may affect the sensitivities of various parameters, the relatively insensitive “multiple independent sampling method” may avoid the need of an entirely new validation study. Moreover, due to large fluctuating entropy values, (QM/)MM‐P(G)BSA were limited to inhibitors’ relative affinity prediction, but not the absolute affinity. The developed protocol will support an ongoing benzimidazole lead optimization program. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
A general molecular mechanics (MM) model for treating aqueous Cu2+ and Zn2+ ions was developed based on valence bond (VB) theory and incorporated into the atomic multipole optimized energetics for biomolecular applications (AMOEBA) polarizable force field. Parameters were obtained by fitting MM energies to that computed by ab initio methods for gas‐phase tetra‐ and hexa‐aqua metal complexes. Molecular dynamics (MD) simulations using the proposed AMOEBA‐VB model were performed for each transition metal ion in aqueous solution, and solvent coordination was evaluated. Results show that the AMOEBA‐VB model generates the correct square‐planar geometry for gas‐phase tetra‐aqua Cu2+ complex and improves the accuracy of MM model energetics for a number of ligation geometries when compared to quantum mechanical (QM) computations. On the other hand, both AMOEBA and AMOEBA‐VB generate results for Zn2+–water complexes in good agreement with QM calculations. Analyses of the MD trajectories revealed a six‐coordination first solvation shell for both Cu2+ and Zn2+ ions in aqueous solution, with ligation geometries falling in the range reported by previous studies. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Structural and dynamical properties of Ge (II) in aqueous solution have been investigated using the novel ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) formalism. The first and second hydration shells were treated by ab initio quantum mechanics at restricted Hartree–Fock (RHF) level using the cc‐pVDZ‐PP basis set for Ge (II) and Dunning double‐ζ plus polarization basis sets for O and H. Besides ligand exchange processes and mean ligand residence times to observe dynamics, tilt‐ and theta‐angle distributions along with an advanced structural parameter, namely radial and angular distribution functions (RAD) for different regions were also evaluated. The combined radial and angular distribution depicted through surface plot and contour map is presented to provide a detailed insight into the density distribution of water molecules around the Ge2+ ion. A strongly distorted hydration structure with two trigonal pyramidal substructures within the first hydration shell is observed, which demonstrates the lone‐pair influence and provides a new basis for the interpretation of the catalytic and pharmacological properties of germanium coordination compounds. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

10.
We comment upon the recent critique of use of the Program for User Package Interfacing and Linking (PUPIL) system for linking AMBER and GAUSSIAN in a multiscale quantum mechanical/molecular mechanics (QM/MM) simulation (Okamoto et al., J. Comput. Chem. 2011 , 32, 932). Specifically, their method for computing forces on the MM particles from the QM region via the GAUSSIAN‐03 electrical field was already implemented in PUPIL version 1.3, publicly available beginning December 2009. Some other doubtful characterizations of PUPIL are discussed briefly in the context of current awareness of open‐source codes more generally. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Structural and dynamical properties of the Cr(III) ion in aqueous solution have been investigated using a combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation. The hydration structure of Cr(III) was determined in terms of radial distribution functions, coordination numbers, and angular distributions. The QM/MM simulation gives coordination numbers of 6 and 15.4 for the first and second hydration shell, respectively. The first hydration shell is kinetically very inert but by no means rigid and variations of the first hydration shell geometry lead to distinct splitting in the vibrational spectra of Cr(H(2)O)(6) (3+). A mean residence time of 22 ps was obtained for water ligands residing in the second hydration shell, which is remarkably shorter than the experimentally estimated value. The hydration energy of -1108 +/- 7 kcal/mol, obtained from the QM/MM simulation, corresponds well to the experimental hydration enthalpy value.  相似文献   

12.
13.
We report here the development of hybrid quantum mechanics/molecular mechanics (QM/MM) interface between the plane‐wave density functional theory based CPMD code and the empirical force‐field based GULP code for modeling periodic solids and surfaces. The hybrid QM/MM interface is based on the electrostatic coupling between QM and MM regions. The interface is designed for carrying out full relaxation of all the QM and MM atoms during geometry optimizations and molecular dynamics simulations, including the boundary atoms. Both Born–Oppenheimer and Car–Parrinello molecular dynamics schemes are enabled for the QM part during the QM/MM calculations. This interface has the advantage of parallelization of both the programs such that the QM and MM force evaluations can be carried out in parallel to model large systems. The interface program is first validated for total energy conservation and parallel scaling performance is benchmarked. Oxygen vacancy in α‐cristobalite is then studied in detail and the results are compared with a fully QM calculation and experimental data. Subsequently, we use our implementation to investigate the structure of rhodium cluster (Rhn; n = 2 to 6) formed from Rh(C2H4)2 complex adsorbed within a cavity of Y‐zeolite in a reducible atmosphere of H2 gas. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
A density functional theory study is presented regarding the energetics and the Mulliken population analyses of a quantum mechanical/molecular mechanical (QM/MM) system including multiple iron–sulfur clusters in the QM region. The [FeFe]‐hydrogenase from Desulfovibrio desulfuricans was studied, and both the active site (an Fe6S6 assembly generally referred to as the H‐cluster) and an ancillary Fe4S4 site were treated at the BP86‐RI/TZVP level. The antiferromagnetic coupling that characterizes both sites was modeled using the broken‐symmetry (BS) approach. For such a QM system, 36 different BS couplings can be defined, depending on the localization of spin excess on the various spin centers. All the BS states were obtained by means of an effective and simple method for spin localization, that is here described and compared with more sophisticated approaches already available in literature. The variation of the QM/MM energy among the various geometry‐optimized protein models was found to be less than 25 kJ mol–1. This energy variation almost doubles if no geometry optimization is performed. A detailed analysis of the additive nature of these variations in QM/MM energy is reported. The Mulliken charges show very small variations among the 36 BS states, whereas the Mulliken spin populations were found to be somewhat more variable. The relevance of such variations is discussed in light of the available Mössbauer and Electron Paramagnetic Resonance (EPR) spectroscopic data for the enzyme. Finally, the influence of the basis set on the spin populations, charges, and structural parameters of the models was investigated, by means of QM/MM computations on the same system at the BP86‐RI/SVP level. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

15.
The hydration structure of Cr(2+) has been studied using molecular dynamics (MD) simulations including three-body corrections and combined ab initio quantum mechanical/molecular mechanical (QM/MM) MD simulations at the Hartree-Fock level. The structural properties are determined in terms of radial distribution functions, coordination numbers, and several angle distributions. The mean residence time was evaluated for describing ligand exchange processes in the second hydration shell. The Jahn-Teller distorted octahedral [Cr(H(2)O)(6)](2+) complex was pronounced in the QM/MM MD simulation. The first-shell distances of Cr(2+) are in the range of 1.9-2.8 A, which are slightly larger than those observed in the cases of Cu(2+) and Ti(3+). No first-shell water exchange occurred during the simulation time of 35 ps. Several water-exchange processes were observed in the second hydration shell with a mean residence time of 7.3 ps.  相似文献   

16.
Combined QM(PM3)/MM molecular dynamics simulations together with QM(DFT)/MM optimizations for key configurations have been performed to elucidate the enzymatic catalysis mechanism on the detoxification of paraoxon by phosphotriesterase (PTE). In the simulations, the PM3 parameters for the phosphorous atom were reoptimized. The equilibrated configuration of the enzyme/substrate complex showed that paraoxon can strongly bind to the more solvent‐exposed metal ion Znβ, but the free energy profile along the binding path demonstrated that the binding is thermodynamically unfavorable. This explains why the crystal structures of PTE with substrate analogues often exhibit long distances between the phosphoral oxygen and Znβ. The subsequent SN2 reaction plays the key role in the whole process, but controversies exist over the identity of the nucleophilic species, which could be either a hydroxide ion terminally coordinated to Znα or the μ‐hydroxo bridge between the α‐ and β‐metals. Our simulations supported the latter and showed that the rate‐limiting step is the distortion of the bound paraoxon to approach the bridging hydroxide. After this preparation step, the bridging hydroxide ion attacks the phosphorous center and replaces the diethyl phosphate with a low barrier. Thus, a plausible way to engineer PTE with enhanced catalytic activity is to stabilize the deformed paraoxon. Conformational analyses indicate that Trp131 is the closest residue to the phosphoryl oxygen, and mutations to Arg or Gln or even Lys, which can shorten the hydrogen bond distance with the phosphoryl oxygen, could potentially lead to a mutant with enhanced activity for the detoxification of organophosphates. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

17.
We present new Lennard-Jones parameters for Cd2+ and Pb2+ ion-water interactions and describe a general methodology to obtain these parameters for any ion. Our strategy is based on the adjustment of ion parameters to reproduce simultaneously experimental absolute hydration free energy and structural properties, namely, g(r) and coordination numbers, obtained from X-ray liquid scattering and quantum mechanical/molecular mechanical (QM/MM) calculations. The validation of the obtained parameters is made by the calculation of dynamical properties and comparing them with experimental values and theoretical results from the literature. The transferability of parameters is checked by the calculation of thermodynamic, structural, and dynamical properties cited above with four different water models. The results obtained for Cd2+ and Pb2+ show an overall agreement with reference values. The absolute hydration free energy calculated with the TIP3P, SPC/E, SPC, and TIP4P water models presents, respectively, percent differences of 3.8, 3.0, 4.3, and 7.2% for lead(II) and 9.8, 8.4, 10.2, and 14.1% for cadmium(II) when compared with experimental values. Ion-water mean distance and coordination numbers for the first coordination shell are in good agreement with experimental and QM/MM results for both ions. Cd2+ shows a lesser diffusion coefficient compared to that of Pb2+ despite its smaller atomic radius, indicating a more persistent first coordination shell for the cadmium(II) ion, a result confirmed with calculations of the mean residence time of water molecules in the first coordination shell.  相似文献   

18.
Classical molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) MD simulations have been performed to investigate the structural and dynamical properties of the Tl(III) ion in water. A six-coordinate hydration structure with a maximum probability of the Tl-O distance at 2.21 A was observed, which is in good agreement with X-ray data. The librational and vibrational spectra of water molecules in the first hydration shell are blue-shifted compared with those of pure liquid water, and the Tl-O stretching force constant was evaluated as 148 Nm(-1). Both structural and dynamical properties show a distortion of the first solvation shell structure. The second shell ligands' mean residence time was determined as 12.8 ps. The Tl(III) ion can be classified as "structure forming" ion; the calculated hydration energy of -986 +/- 9 kcal mol agrees well with the experimental value of -986 kcal mol.  相似文献   

19.
We have estimated free energies for the binding of eight carboxylate ligands to two variants of the octa-acid deep-cavity host in the SAMPL6 blind-test challenge (with or without endo methyl groups on the four upper-rim benzoate groups, OAM and OAH, respectively). We employed free-energy perturbation (FEP) for relative binding energies at the molecular mechanics (MM) and the combined quantum mechanical (QM) and MM (QM/MM) levels, the latter obtained with the reference-potential approach with QM/MM sampling for the MM → QM/MM FEP. The semiempirical QM method PM6-DH+ was employed for the ligand in the latter calculations. Moreover, binding free energies were also estimated from QM/MM optimised structures, combined with COSMO-RS estimates of the solvation energy and thermostatistical corrections from MM frequencies. They were performed at the PM6-DH+ level of theory with the full host and guest molecule in the QM system (and also four water molecules in the geometry optimisations) for 10–20 snapshots from molecular dynamics simulations of the complex. Finally, the structure with the lowest free energy was recalculated using the dispersion-corrected density-functional theory method TPSS-D3, for both the structure and the energy. The two FEP approaches gave similar results (PM6-DH+/MM slightly better for OAM), which were among the five submissions with the best performance in the challenge and gave the best results without any fit to data from the SAMPL5 challenge, with mean absolute deviations (MAD) of 2.4–5.2 kJ/mol and a correlation coefficient (R2) of 0.77–0.93. This is the first time QM/MM approaches give binding free energies that are competitive to those obtained with MM for the octa-acid host. The QM/MM-optimised structures gave somewhat worse performance (MAD?=?3–8 kJ/mol and R2?=?0.1–0.9), but the results were improved compared to previous studies of this system with similar methods.  相似文献   

20.
A molecular dynamics (MD) simulation based on a combined ab initio quantum mechanics/molecular mechanics (QM/MM) method has been performed to investigate the solvation structure and dynamics of H3O+ in water. The QM region is a sphere around the central H3O+ ion, and contains about 6-8 water molecules. It is treated at the Hartree-Fock (HF) level, while the rest of the system is described by means of classical pair potentials. The Eigen complex (H9O4+) is found to be the most prevalent species in the aqueous solution, partly due to the selection scheme of the center of the QM region. The QM/MM results show that the Eigen complex frequently converts back and forth into the Zundel (H5O2+) structure. Besides the three nearest-neighbor water molecules directly hydrogen-bonded to H3O+, other neighbor waters, such as a fourth water molecule which interacts preferentially with the oxygen atom of the hydronium ion, are found occasionally near the ion. Analyses of the water exchange processes and the mean residence times of water molecules in the ion's hydration shell indicate that such next-nearest neighbor water molecules participate in the rearrangement of the hydrogen bond network during fluctuative formation of the Zundel ion and, thus, contribute to the Grotthuss transport of the proton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号