首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intermolecular interactions existing at three different sites between phenylacetylene and LiX (X = OH, NH2, F, Cl, Br, CN, NC) have been investigated by means of second‐order Møller?Plesset perturbation theory (MP2) calculations and quantum theory of “atoms in molecules” (QTAIM) studies. At each site, the lithium‐bonding interactions with electron‐withdrawing groups (? F, ? Cl, ? Br, ? CN, ? NC) were found to be stronger than those with electron‐donating groups (? OH and ? NH2). Molecular graphs of C6H5C?CH···LiF and πC6H5C?CH···LiF show the same connectional positions, and the electron densities at the lithium bond critical points (BCPs) of the πC6H5C?CH···LiF complexes are distinctly higher than those of the σC6H5C?CH···LiF complexes, indicating that the intermolecular interactions in the C6H5C?CH···LiX complexes can be mainly attributed to the π‐type interaction. QTAIM studies have shown that these lithium‐bond interactions display the characteristics of “closed‐shell” noncovalent interactions, and the molecular formation density difference indicates that electron transfer plays an important role in the formation of the lithium bond. For each site, linear relationships have been found between the topological properties at the BCP (the electron density ρb, its Laplacian ?2ρb, and the eigenvalue λ3 of the Hessian matrix) and the lithium bond length d(Li‐bond). The shorter the lithium bond length d(Li‐bond), the larger ρb, and the stronger the π···Li bond. The shorter d(Li‐bond), the larger ?2ρb, and the greater the electrostatic character of the π···Li bond. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Series of typical π‐type and pseudo‐π‐type halogen‐bonded complexes B ··· ClY and B ··· BrY and hydrogen‐bonded complex B ··· HY (B = C2H4, C2H2, and C3H6; Y = F, Cl, and Br) have been investigated using the MP2/aug‐cc‐pVDZ method. A striking parallelism was found in the geometries, vibrational frequencies, binding energies, and topological properties between B ··· XY and B ··· HY (X = Cl and Br). It has been found that the lengths of the weak bond d(X ··· π)/d(H ··· π), the frequencies of the weak bond ν(X ··· π)/ν(H ··· π), the frequency shifts Δν(X? Y)/Δν(H? Y), the electron densities at the bond critical point of the weak bonds ρc(X ··· π)/ρc(H ··· π), and the electron density changes Δρc(X? Y)/Δρc(H? Y) could be used as measures of the strengths of typical π‐type and pseudo‐π‐type halogen/hydrogen bonds. The typical π‐type and pseudo‐π‐type halogen bond and hydrogen bond are noncovalent interactions. For the same Y, the halogen bond strengths are in the order B ··· ClY < B ··· BrY. For the same X, the halogen bond strength decreases according to the sequence F > Cl > Br that is in agreement with the hydrogen bond strengths B ··· HF > B ··· HCl > B ··· HBr. All of these typical π‐type and pseudo‐π‐type hydrogen‐bonded and halogen‐bonded complexes have the “conflict‐type” structure. Contour maps of the Laplacian of π electron density indicate that the formation of B ··· XY halogen‐bonded complex and B ··· HY hydrogen‐bonded complex is very similar. Charge transfer is observed from B to XY/HY and both the dipolar polarization and the volume of the halogen atom or hydrogen atom decrease on B ··· XY/B ··· HY complex formation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
Two sulfato CuII complexes [Cu2(bpy)2(H2O)(OH)2(SO4)]· 4H2O ( 1 ) and [Cu(bpy)(H2O)2]SO4 ( 2 ) were synthesized and structurally characterized by single crystal X—ray diffraction. Complex 1 consists of the asymmetric dinuclear [Cu2(bpy)2(H2O)(OH)2(SO4)] complex molecules and hydrogen bonded H2O molecules. Within the dinuclear molecules, the Cu atoms are in square pyramidal geometries, where the equatorial sites are occupied by two N atoms of one bpy ligand and two O atoms of different μ2—OH groups and the apical position by one aqua ligand or one sulfato group. Through intermolecular O—H···O and C—H···O hydrogen bonds and intermolecular π—π stacking interactions, the dinuclear complex molecules are assembled into layers, between which the hydrogen bonded H2O molecules are located. The Cu atoms in 2 are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two H2O molecules and two sulfato groups with the sulfato O atoms at the trans positions and are bridged by sulfato groups into 1[Cu(bpy)(H2O)2(SO4)2/2] chains. Through the interchain π—π stacking interactions and interchain C—H···O hydrogen bonds, the resulting chains are assembled into bi—chains, which are further interlinked into layers by O—H···O hydrogen bonds between adjacent bichains.  相似文献   

4.
Using ferrocenecarboxylic acid (FcCOOH) as organometallic ligand in the synthesis of heterometallic complexes led to the isolation of the compound [(FcCOO)Cu(bpy)2](BF4) · bpy · CH3OH. It was characterized by IR spectroscopy, EA, powder XRD, UV, and TGA measurements. Single‐crystal X‐ray structural analysis revealed that a unique 2D supramolecular network purely formed by aromatic π ··· π stacking interactions was observed, namely, {[(FcCOO)Cu(bpy)2](BF4) · bpy · CH3OH} ( 1 ). The solid UV/Vis diffuse reflectance spectrum revealed the optical energy gap of 1 to be 3.54 eV, which is dramatically blue shifted compared with the value of ferrocene. Experimental results of thermal analysis and electrochemical analysis show that 1 has good thermal and better electrochemical stability.  相似文献   

5.
The reaction of CuI with 2,3‐diphenylquinoxaline ( L ) in 1:1 mole proportion in CH3CN/THF afforded the dinuclear complex [CuI( L )]2, 1 , whereas the reactions of MX2 (M = Cu; Hg) with L in 1:2 mole proportion in CH3OH gave the mononuclear complexes CuX2( L )2 (X = Cl, 2 ; Br, 3 ) and HgX2( L )2 (X = Cl, 4 ; Br, 5 ). Formulations of all the complexes were determined on the basis of X‐ray crystallography, elemental, IR‐ and emission spectroscopy. X‐ray examination revealed that complex 1 forms the μ,μ‐iodobridged dimer with distorted trigonal planar geometry through coordination of L ligand by one nitrogen atom to the Cu(I) center. The metal centers of complexes 2 and 3 form distorted square planar geometry while those of complexes 4 and 5 form linear geometry. The molecules of these complexes are interlinked through C‐H—π and/or π‐π stacking and anion—π interactions that form the packed structure. All the complexes exhibit emissions which may be tentatively assigned as intraligand (IL) π r? π* transitions.  相似文献   

6.
The σ‐hole of M2H6 (M = Al, Ga, In) and π‐hole of MH3 (M = Al, Ga, In) were discovered and analyzed, the bimolecular complexes M2H6···NH3 and MH3···N2P2F4 (M = Al, Ga, In) were constructed to carry out comparative studies on the group III σ‐hole interactions and π‐hole interactions. The two types of interactions are all partial‐covalent interactions; the π‐hole interactions are stronger than σ‐hole interactions. The electrostatic energy is the largest contribution for forming the σ‐hole and π‐hole interaction, the polarization energy is also an important factor to form the M···N interaction. The electrostatic energy contributions to the interaction energy of the σ‐hole interactions are somewhat greater than those of the π‐hole interactions. However, the polarization contributions for the π‐hole interactions are somewhat greater than those for the σ‐hole interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
The reaction of [1,3‐bis(2‐ethoxy)benzene]triazene, [ HL ], with Hg(SCN)2 and Hg(CH3COO)2, resulted in the formation of the complexes [Hg L (SCN)] ( 1 ) and [Hg L 2] · CH3OH ( 2 ). They were characterized by means of X‐ray crystallography, CHN analysis, FT‐IR, 1H NMR, and 13C NMR spectroscopy. The structure of compound 1 consists of two independent complexes in which the HgII atoms are stacked along the crystallographic a axis to form infinite chains. Each HgII atom is chelated by one L ligand and one SCN ligand, whereas in compound 2 , the HgII atom is surrounded by two L ligands. In addition, 1D chains formed by metal–π interactions are connected to each other by C–H ··· π stacking interactions in the structure of 1 , which results in a 2D architecture. An interesting feature of compound 2 is the presence of C–H ··· π edge‐to‐face interactions.  相似文献   

8.
Catalysis by small molecules (≤1000 Da, 10?9 m) that are capable of binding and activating substrates through attractive, noncovalent interactions has emerged as an important approach in organic and organometallic chemistry. While the canonical noncovalent interactions, including hydrogen bonding, ion pairing, and π stacking, have become mainstays of catalyst design, the cation–π interaction has been comparatively underutilized in this context since its discovery in the 1980s. However, like a hydrogen bond, the cation–π interaction exhibits a typical binding affinity of several kcal mol?1 with substantial directionality. These properties render it attractive as a design element for the development of small‐molecule catalysts, and in recent years, the catalysis community has begun to take advantage of these features, drawing inspiration from pioneering research in molecular recognition and structural biology. This Review surveys the burgeoning application of the cation–π interaction in catalysis.  相似文献   

9.
Reaction of CuCl2 · 2H2O, phenanthroline, maleic acid and NaOH in CH3OH/H2O (1:1 v/v) at pH = 7.0 yielded blue {[Cu(phen)]2(C4H2O4)2} · 4.5H2O, which crystallizes in the monoclinic space group C2/c (no. 15) with cell dimensions: a = 18.127(2)Å, b = 12.482(2)Å, c = 14.602(2)Å, β = 103.43(1)°, U = 3213.5(8)Å3, Z = 4. The crystal structure consists of the centrosymmetric dinuclear {[Cu(phen)]2(C4H2O4)2} complex molecules and hydrogen bonded H2O molecules. The Cu atoms are each square‐pyramidally coordinated by two N atoms of one phen ligand and three carboxyl O atoms of two maleato ligands with one carboxyl O atom at the apical position (d(Cu‐N) = 2.008, 2.012Å, equatorial d(Cu‐O) = 1.933, 1.969Å, axial d(Cu‐O) = 2.306Å). Two square‐pyramids are condensed via two apical carboxyl O atoms with a relatively larger Cu···Cu separation of 3.346(1)Å. The dinuclear complex molecules are assembled via the intermolecular π—π stacking interactions into 1D ribbons. Crossover of the resulting ribbons via interribbon π—π stacking interactions forms a 3D network with the tunnels occupied by H2O molecules. The title complex behaves paramagnetically between 5—300 K, following the Curie‐Weiss law χm(T—θ) = 0.435 cm3 · mol—1 · K with θ = 1.59 K.  相似文献   

10.
The blue copper complex [Cu2(H2O)2(phen)2(OH)2][Cu2(phen)2(OH)2(CO3)2] · 10 H2O, which was prepared by reaction of 1,10‐phenanthroline monohydrate, CuCl2 · 2 H2O and Na2CO3 in the presence of succinic acid in CH3OH/H2O at pH = 13.0, crystallized in the triclinic space group P1 (no. 2) with cell dimensions: a = 9.515(1) Å, b = 12.039(1) Å, c = 12.412(2) Å, α = 70.16(1)°, β = 85.45(1)°, γ = 81.85(1)°, V = 1323.2(2) Å3, Z = 1. The crystal structure consists of dinuclear [Cu2(H2O)2(phen)2(OH)2]2+ complex cations, dinuclear [Cu2(phen)2(OH)2(CO3)2]2– complex anions and hydrogen bonded H2O molecules. In both the centrosymmetric dinuclear cation and anion, the Cu atoms are coordinated by two N atoms of one phen ligand, three O atoms of two μ‐OH groups and respectively one H2O molecule or one CO32– anion to complete distorted [CuN2O3] square‐pyramids with the H2O molecule or the CO32– anion at the apical position (equatorial d(Cu–O) = 1.939–1.961 Å, d(Cu–N) = 2.026–2.051 Å and axial d(Cu–O) = 2.194, 2.252 Å). Two adjacent [CuN2O3] square pyramids are condensed via two μ‐OH groups. Through the interionic hydrogen bonds, the dinuclear cations and anions are linked into 1D chains with parallel phen ligands on both sides. Interdigitation of phen ligands of neighboring 1D chains generated 2D layers, between which the hydrogen bonded water molecules are sandwiched.  相似文献   

11.
The title ligand, [1‐(2‐methoxyphenyl)‐3‐(4‐chlorophenyl)]triazene, H L ( 1 ), was prepared. In a reaction with Hg(NO3)2 it forms the complex [Hg(C26H22Cl2N6O2)], [Hg L 2] ( 2 ). Both compounds were characterized by means of X‐ray crystallography, CHN analysis, FT‐IR, 1H NMR, and 13C NMR spectroscopy. In the structure of compound 1 , two independent fragments are present in the unit cell. They exhibit trans arrangement about the –N=N– double bond. The dihedral angles between two benzene rings in both fragments are 4.36 and 18.79 Å, respectively. Non‐classic C–H ··· N hydrogen bonding and C–H ··· π interactions form a layer structure along the crystallographic ab plane [110]. In compound 2 , the HgII atom is hexacoordinated by two tridentate [1‐(2‐methoxyphenyl)‐3‐(4‐chlorophenyl)]triazenide ligands through a N2O2 set. In addition, in the structure of 2 , monomeric complexes are connected to each other by C–H ··· π stacking interactions, resulting in a 2D architecture. These C–H ··· π edge‐to‐face interactions are present with H ··· π distances of 3.156 and 3.027 Å. The results of studies of the stoichiometry and formation of complex 2 in methanol solution were found to support its solid state stoichiometry.  相似文献   

12.
Two new trinuclear complexes [CuII(NiIIX1)2(C2H5OH)2]· (ClO4)2·2(CH3OH) ( 1 ) and [CuII(NiIIX2)2(H2O)]·(ClO4)2· 0.75(H2O) ( 2 ) (X1 = dianion of 5,6;13,14‐dibenzo‐7,12‐bis(ethoxycarboxyl)‐9‐methyl‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca‐7,11‐diene. X2 = dianion of 5,6;13,14‐dibenzo‐9,10‐cyclohexano‐7,12‐bis(ethoxycarboxyl)‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca7,11‐diene.) have been synthesized and characterized by single crystal X‐ray analysis, elemental analysis, IR, UV and EPR spectroscopies. The complexes consist of NiIICuIINiII heteronuclear cationic entities. The central CuII atom of 1 lies in an octahedral coordination environment, while that of 2 resides in a square‐pyramidal coordination sphere. The adjacent trinuclear units of 1 are linked together through π‐π stacking interactions resulting in a 1D supramolecular chain, whereas the π‐π stacking interactions between the contiguous units of 2 lead to a 2D structure. The EPR spectra of the two complexes show a signal of an axially elongated octahedral CuII system in 1 and an axially elongated square‐pyramidal CuII system in 2 , respectively. The hyperfine splitting of the CuII atoms (ICu = 3/2) has also been observed in the EPR spectra.  相似文献   

13.
Reactions of phenanthroline (phen) and Er(NO3)3 · 5 H2O or Lu(NO3)3 · H2O in CH3OH/H2O yield [Ln2(phen)4(H2O)4(OH)2](NO3)4(phen)2 with Ln = Er ( 1 ), Lu ( 2 ). Both isostructural complex compounds crystallize in the triclinic space group P 1 (no. 2) with the cell dimensions: a = 11.257(2) Å, b = 11.467(2) Å, c = 14.069(2) Å, α = 93.93(2)°, β = 98.18(1)°, γ = 108.14(1)°, V = 1696.0(6) Å3, Z = 1 for ( 1 ) and a = 11.251(1) Å, b = 11.476(1) Å, c = 14.019(1) Å, α = 93.83(1)°, β = 98.27(1)°, γ = 108.27(1)°, V = 1689.0(3) Å3, Z = 1 for ( 2 ). The crystal structures consist of the hydroxo bridged dinuclear [Ln2(phen)4(H2O)4(OH)2]4+ complex cations, hydrogen bonded NO3 anions and π‐π stacking (phen)2 dimers. The rare earth metal atoms are coordinated by four N atoms of two phen ligands and four O atoms of two H2O molecules and two μ‐OH groups to complete tetragonal antiprisms. Via two common μ‐OH groups, two neighboring tetragonal antiprisms are condensed to a centrosymmetric dinuclear [Ln2(phen)4(H2O)4(OH)2]4+ complex cation. Based on π‐π stacking interactions and hydrogen bonding, the complex cations and (phen)2 dimers form 2 D layers parallel to (1 0 1), between which the hydrogen bonded NO3 anions are sandwiched. The structures can be simplified into a distorted CsCl structure when {[Ln2(phen)4(H2O)4(OH)2](NO3)4} and (phen)2 are viewed as building units.  相似文献   

14.
The interactions between atoms of noble gases and π systems are generally considered as van der Waals interaction, which have not attracted attention yet. Herein, we present high‐level ab initio calculations to show the unexpected noncovalent interaction between a covalently bonded noble gas atom and a delocalized aromatic π electron using XeO3?benzene as the prototype. The CCSD(T)/CBS reference data show its strength amounting to ?10.2 kcal mol?1, comparable to a typical H‐bond or an anion–π interaction. The energy decomposition analysis reveals that the aerogen–π interaction is favored by the electrostatic interaction (27.7 %), the induction (13.4 %), and the dispersion (21.6 %). This interaction may prompt us to consider the noncovalent chemistry of aerogen derivatives in the near future.  相似文献   

15.
The blue tetranuclear CuII complexes {[Cu(bpy)(OH)]4Cl2}Cl2 · 6 H2O ( 1 ) and {[Cu(phen)(OH)]4(H2O)2}Cl4 · 4 H2O ( 2 ) were synthesized and characterized by single crystal X‐ray diffraction. ( 1 ): P 1 (no. 2), a = 9.240(1) Å, b = 10.366(2) Å, c = 12.973(2) Å, α = 85.76(1)°, β = 75.94(1)°, γ = 72.94(1)°, V = 1152.2(4) Å3, Z = 1; ( 2 ): P 1 (no. 2), a = 9.770(3) Å, b = 10.118(3) Å, c = 14.258(4) Å, α = 83.72(2)°, β = 70.31(1)°, γ = 70.63(1)°, V = 1252.0(9) Å3, Z = 1. The building units are centrosymmetric tetranuclear {[Cu(bpy)(OH)]4Cl2}2+ and {[Cu(phen)(OH)]4(H2O)2}4+ complex cations formed by condensation of four elongated square pyramids CuN2(OH)2Lap with the apical ligands Lap = Cl, H2O, OH. The resulting [Cu42‐OH)23‐OH)2] core has the shape of a zigzag band of three Cu2(OH)2 squares. The cations exhibit intramolecular and intermolecular π‐π stacking interactions and the latter form 2D layers with the non‐bonded Cl anions and H2O molecules in between (bond lengths: Cu–N = 1.995–2.038 Å; Cu–O = 1.927–1.982 Å; Cu–Clap = 2.563; Cu–Oap(OH) = 2.334–2.369 Å; Cu–Oap(H2O) = 2.256 Å). The Cu…Cu distances of about 2.93 Å do not indicate direct interactions, but the strongly reduced magnetic moment of about 2.74 B.M. corresponds with only two unpaired electrons per formula unit of 1 (1.37 B.M./Cu) and obviously results from intramolecular spin couplings (χm(T‐θ) = 0.933 cm3 · mol–1 · K with θ = –0.7 K).  相似文献   

16.
Localized orbitals have recently been employed in large ab initio calculations, but their use has generally been restricted to ground‐state problems. In this work, we analyze the molecular orbitals of the excited states, optimized with a recently proposed local procedure. This method produces local orbitals of the CAS–SCF type, which permits its application to the study of excited states. In particular, we focus on the π→π* triplet excited state in polyenes, calculated using a 2/2 CAS space which includes two electrons in one π and one π* orbitals. In small polyenes, these two singly occupied active orbitals are delocalized all along the molecule. The extent of the delocalization is analyzed by studying polyenes of increasing size. Different polyenes have been studied, going from C14H16 to the C70H72 polyene. The relation of the π→π* excitation with the cation and anion systems is also discussed. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

17.
Different from the case of the benzene dimer, the differences between the interaction energies are always less than 0.50 kcal/mol for face‐to‐face eclipsed, face‐to‐face staggered, and parallel‐displaced configurations of all investigated complexes C6H6···C6X6 (X = F, Cl, Br, and I). Hence, it is a great challenge for quantum chemists to accurately calculate the interaction energies for the three configurations of the complexes C6H6···C6X6. This work demonstrates that results obtained with the PBE0 density functional combined with the D3 dispersion correction (PBE0‐D3) and the basis set def2‐TZVPP are in excellent agreement with the estimates of the coupled‐cluster singles, doubles, and perturbative triples [CCSD(T)] complete basis set (CBS) limit. The other finding in this study is that, in comparison with the gold‐standard CCSD(T)/CBS benchmark, the spin‐component scaled (SCS) zeroth‐order symmetry‐adapted perturbation theory (SAPT0), when paired with the basis set aug‐cc‐pVDZ, performs also very well, and its performance is even better than that of the PBE0‐D3/def2‐TZVPP method or the conventional SAPT/aug‐cc‐pVQZ method. The findings of this study are very significant because both PBE0‐D3/def2‐TZVPP and SCS‐SAPT0/aug‐cc‐pVDZ can deal with the systems with more than 200 atoms.  相似文献   

18.
In this work, density functional theory calculations on geometries and energies of all possible conformers of the [Co(NH3)6]3+–C6H6 cation–π complex are described. The calculations show that stationary points are several η2 and the η3 structures. The most stable η3 structure has bonding energy, after basis set superposition error correction, of 32.18 kcal/mol. The energies of η3 structures are similar; also, the energies of η2 structures are similar while the difference in energy between η3 and the η2 structures is about 2 kcal/mol. This indicates a possibility for various orientations of the benzene ring with respect to interacting ligands in the case of metal ligand aromatic cation–π (MLACπ) interactions and a possibility for the existence of these interactions in different molecular systems. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

19.
Noncovalent interactions involving aromatic rings, such as π···π stacking, CH···π are very essential for supramolecular carbon nanostructures. Graphite is a typical homogenous carbon matter based on π···π stacking of graphene sheets. Even in systems not involving aromatic groups, the stability of diamondoid dimer and layer‐layer graphane dimer originates from C − H···H − C noncovalent interaction. In this article, the structures and properties of novel heterogeneous layer‐layer carbon‐nanostructures involving π···H‐C‐C‐H···π···H‐C‐C‐H stacking based on [n ]‐graphane and [n ]‐graphene and their derivatives are theoretically investigated for n = 16–54 using dispersion corrected density functional theory B3LYP‐D3 method. Energy decomposition analysis shows that dispersion interaction is the most important for the stabilization of both double‐ and multi‐layer‐layer [n ]‐graphane@graphene. Binding energy between graphane and graphene sheets shows that there is a distinct additive nature of CH···π interaction. For comparison and simplicity, the concept of H‐H bond energy equivalent number of carbon atoms (noted as NHEQ), is used to describe the strength of these noncovalent interactions. The NHEQ of the graphene dimers, graphane dimers, and double‐layered graphane@graphene are 103, 143, and 110, indicating that the strength of C‐H···π interaction is close to that of π···π and much stronger than that of C‐H···H‐C in large size systems. Additionally, frontier molecular orbital, electron density difference and visualized noncovalent interaction regions are discussed for deeply understanding the nature of the C‐H···π stacking interaction in construction of heterogeneous layer‐layer graphane@graphene structures. We hope that the present study would be helpful for creations of new functional supramolecular materials based on graphane and graphene carbon nano‐structures. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
A new two‐dimensional metal‐organic coordination polymer [Cd2(2,3,2′,3′‐sdpa)(H2O)3] · 2H2O ( 1 ) were hydro(solvo)thermally synthesized by the reaction of 2,3,2′,3′‐sulfonyldiphthalic acid (2,3,2′,3′‐H4sdpa) with Cd(NO3)2 · 4H2O and characterized by elemental analysis, thermogravimetry, IR and luminescence spectroscopy, and X‐ray diffraction. In complex 1 , two kinds of cadmium atoms are linked together by anionic sdpa4– ligands to form a 2D metal‐organic network. The adjacent 2D layers further interact with each other through hydrogen bonds and π ··· π interactions to form a 3D supramolecular structure. The luminescence spectra and thermal properties of 1 were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号