首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A prepared molecularly imprinted polymer with ethyl p‐hydroxybenzoate as template molecule was applied for the first time to a homemade solid‐phase microextraction fiber. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was characterized by scanning electron microscopy and thermogravimetric analysis. Various parameters were investigated, including extraction temperature, extraction time, and desorption time. Under the optimum extraction conditions, the molecularly imprinted polymer‐coated solid‐phase microextraction fiber exhibited higher selectivity with greater extraction capacity toward parabens compared with the nonimprinted polymer‐coated solid‐phase microextraction fiber and commercial fibers. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was tested using gas chromatography to determine parabens, including methyl p‐hydroxybenzoate, ethyl p‐hydroxybenzoate, and propyl p‐hydroxybenzoate. The linear ranges were 0.01–10 μg/mL with a correlation coefficient above 0.9943. The detection limits (under signal‐to‐noise ratio of 3) were below 0.30 μg/L. The fiber was successfully applied to the simultaneous analysis of three parabens in spiked soy samples with satisfactory recoveries of 95.48, 97.86, and 92.17%, respectively. The relative standard deviations (n=6) were within 2.83–3.91%. The proposed molecularly imprinted polymer‐coated solid‐phase microextraction method is suitable for selective extraction and determination of trace parabens in food samples.  相似文献   

2.
In this study, molecularly imprinted polymer fibers for solid‐phase microextraction have been prepared with a single bifunctional monomer, N,O‐bismethacryloyl ethanolamine using the so‐called “one monomer molecularly imprinted polymers” method, replacing the conventional combination of functional monomer and cross‐linker to form high fidelity binding sites. For comparison, imprinted fibers were prepared following the conventional approach based on ethylene glycol dimethacrylate as cross‐linker and methacrylic acid as monomer. The recognition performance of the new fibers was evaluated in the solid‐phase microextraction of parabens, and from this study it was concluded that they provided superior performance over conventionally formulated fibers. Ultimately, real‐world environmental testing on spiked solid samples was successful by the molecularly imprinted solid‐phase microextraction of samples, and the relative recoveries obtained at enrichment levels of 10 ng/g of parabens were within 78–109% for soil and 83–109% for sediments with a relative standard deviation <15% (n = 3).  相似文献   

3.
As signal molecules, auxins play an important role in mediating plant growth. Due to serious interfering substances in plants, it is difficult to accurately detect auxins with traditional solid‐phase extraction methods. To improve the selectivity of sample pretreatment, a novel molecularly imprinted polymer ‐coated solid‐phase microextraction fiber, which could be coupled directly to high‐performance liquid chromatography, was prepared with indole acetic acid as template molecule for the selective extraction of auxins. The factors influencing the polymer formation, such as polymerization solvent, cross‐linker, and polymerization time, were investigated in detail to enhance the performance of indole acetic acid‐molecularly imprinted polymer coating. The morphological and chemical stability of this molecularly imprinted polymer‐coated fiber was characterized by scanning electron microscopy, infrared spectrometry, and thermal analysis. The extraction capacity of the molecularly imprinted polymer‐coated solid‐phase microextraction fiber was evaluated for the selective extraction of indole acetic acid and indole‐3‐pyruvic acid followed by high‐performance liquid chromatography analysis. The linear range for indole acetic acid and indole‐3‐pyruvic acid was 1–100 µg/L and their detection limit was 0.5 µg/L. The method was applied to the simultaneous determination of two auxins in two kinds of tobacco (Nicotiana tabacum L and Nicotiana rustica L) samples, with recoveries range from 82.1 to 120.6%.  相似文献   

4.
The development of a simple and effective method for the isolation and purification of sulfadiazine residues in food of animal origin is of great significance since it is a great danger to human health. An off‐line molecularly imprinted solid‐phase extraction with high‐performance liquid chromatography method was proposed for the selective pretreatment and determination of sulfadiazine in eggs, rapidly and effectively. The molecularly imprinted polymer was proved to have a homogeneous spherical structure and porous surface morphology with excellent adsorption capacity of 5258 μg/g for sulfadiazine. The newly established method showed a good linearity in the range of 0–200 μg/L, low limits of detection (0.06 μg/L), acceptable reproducibility (RSD, 2.60–5.03%, n = 3), and satisfactory relative recoveries (78.22–86.10%). It was demonstrated that the proposed molecularly imprinted solid‐phase extraction with high‐performance liquid chromatography method could be applied to determine sulfadiazine in eggs, which simplified the pretreatment procedure and improved the accuracy of the analysis process by reducing the loss of sulfadiazine in the fat‐removing procedure compared with traditional methods. Molecularly imprinted solid‐phase extraction with excellent selectivity and adsorption capacity is a simple, rapid, selective, and effective pretreatment method for the determination of sulfadiazine in egg samples.  相似文献   

5.
The development and application of an imazethapyr molecularly imprinted polymer‐based solid‐phase microextraction coating were investigated. A novel molecularly imprinted polymer coating with imazethapyr as template was firstly prepared by a one‐step in situ polymerization method, and demonstrated specific selectivity to imidazolinone herbicides in complicated samples. The structural characteristics and extraction performance of the imazethapyr molecularly imprinted polymer coating were studied. The molecularly imprinted polymer coating was homogeneous, dense, and heat and solvent resistant. Adsorption capacity experiments showed that the molecularly imprinted polymer coating could selectively extract imazethapyr and its structural analogs, and the maximum adsorption capacity was 2.5 times as much as that of the nonimprinted polymer coating. A method for the determination of five imidazolinones by imazethapyr molecularly imprinted polymer solid‐phase microextraction coupled with high‐performance liquid chromatography was developed. The linear range was 0.50–50 μg/L for imazameth, imazamox, imazapyr acid, and imazethapyr, and 1.0–100 μg/L for imazaquin acid, and the detection limits were within the range of 0.070–0.29 μg/L. The method was applied to simultaneous and multiresidual determinations of trace imidazolinones in rice, peanut, and soil samples with satisfactory recoveries of 60.6–99.5, 79.1–123, and 61.3–116%, respectively, and relative standard deviations of 0.40–10%, which indicated that this method was suitable for the trace analysis of imidazolinones in complex food and environmental samples.  相似文献   

6.
A novel molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed for the selective extraction of telmisartan from human urine. Molecularly imprinted polymers were prepared by a noncovalent imprinting approach through UV‐radical polymerization using telmisartan as a template molecule, 2‐dimethylamino ethyl methacrylate as a functional monomer, ethylene glycol dimethacrylate as a cross‐linker, N,N‐azobisisobutyronitrile as an initiator, chloroform as a porogen. Molecularly imprinted polymers and nonimprinted control polymer sorbents were dry‐packed into solid‐phase extraction cartridges, and eluates from cartridges were analyzed using a spectrofluorimeter. Limit of detection and limit of quantitation values were 11.0 and 36.0 ng/mL, respectively. A very high imprinting factor (16.1) was achieved and recovery values for the telmisartan spiked in human urine were in the range of 76.1–79.1%. In addition, relatively low within‐day (0.14–1.6%) and between‐day (0.11–1.31%) precision values were obtained. Valsartan was used to evaluate the selectivity of sorbent as well. As a result, a sensitive, selective, and simple molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed and successfully applied to the direct determination telmisartan in human urine.  相似文献   

7.
A simple, sensitive, and selective molecularly imprinted solid‐phase extraction and spectrophotometric method has been developed for the clean‐up and preconcentration of indapamide from human urine. Molecularly imprinted polymers were prepared by a non‐covalent imprinting approach using indapamide as a template molecule, 2‐(trifluoromethyl) acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, N,N‐azobisisobutyronitrile as a thermal initiator and acetonitrile as a porogenic solvent. A non‐imprinted polymer was also prepared in the same way, but in the absence of template. Molecularly imprinted polymer and non‐imprinted polymer sorbents were dry‐packed into solid‐phase extraction cartridges. Eluates from cartridges were analyzed using a spectrophotometer for the determination of indapamide by referring to the calibration curve in the range 0.14–1.50 μg/mL. Preconcentration factor, limit of detection, and limit of quantification were 16.30, 0.025 μg/mL, and 0.075 μg/mL, respectively. A relatively high imprinting factor (9.3) was also achieved and recovery values for the indapamide spiked into human urine were in the range of 80.1–81.2%. In addition, relatively low within‐day (0.17–0.42%) and between‐day (1.1–1.4%) precision values were obtained as well. The proposed molecularly imprinted solid‐phase extraction and spectrophotometric method was successfully applied to selective extraction, preconcentration, and determination of indapamide from human urine samples.  相似文献   

8.
In this work, we developed a novel molecularly imprinted solid‐phase microextraction with capillary electrophoresis method for the selective extraction and determination of protoberberines in complicated samples. The imprinted monolith was prepared in a micropipette tip‐based device by using acrylamide as the functional monomer, ethyleneglyoldimethacrylate as the cross‐linker and dimethylsulfoxide as the porogen, and exhibited an imprinting factor of 2.41 to berberine, 2.36 to palmatine and 2.38 to jatrorrhizine. Good capillary electrophoresis separation was achieved by using 20 mM phosphate buffer at pH 7 as running buffer with the addition of organic modifier of 10% methanol. Parameters such as sample pH value, sample flow rate and sample volume were investigated for imprinted monolith‐based solid‐phase microextraction. An imprinted solid‐phase microextraction with capillary electrophoresis method was developed, the method showed a wide linear range (0.3–50 μg/mL), good linearity (R2 ≥ 0.9947) and good reproducibility (relative standard deviations ≤ 0.73%), the limit of detection was as low as 0.1 μg/mL, which was lower than some reported methods based on capillary electrophoresis for protoberberines. The method has been applied for determination of three common protoberberines in Cortex Phellodendri Chinensis, by using a molecularly imprinted monolith as the selective sorbent, most of the matrices in the Cortex Phellodendri Chinensis sample were removed and three protoberberines were selectively enriched and well determined.  相似文献   

9.
A simple, rapid, and highly sensitive method for simultaneous analysis of anti‐inflammatory drugs (naproxen, ibuprofen, and mefenamic acid) in diluted human serum was developed using the electrochemically controlled solid‐phase microextraction coupled to ion mobility spectrometry. A conducting molecularly imprinted polymer film based on polypyrrole was synthesized for the selective uptake and release of drugs. The film was prepared by incorporation of a template molecule (naproxen) during the electropolymerization of pyrrole onto a platinum electrode using cyclic voltammetry method. The measured ion mobility spectrometry intensity was related to the concentration of analytes taken up into the films. The calibration graphs (naproxen, ibuprofen, and mefenamic acid) were linear in the range of 0.1–30 ng/mL and detection limits were 0.07–0.37 ng/mL and relative standard deviation was lower than 6%. On the basis of the results obtained in this work, the conducting molecularly imprinted polymer films as absorbent have been applied in the electrochemically controlled solid‐phase microextraction and ion mobility spectrometry system for the selective clean‐up and quantification of trace amounts of anti‐inflammatory drugs in human serum samples. Scanning electron microscopy has confirmed the nano‐structure morphology of the polypyrrole film.  相似文献   

10.
This research highlights the application of highly efficient molecularly imprinted solid‐phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine‐imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross‐linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid‐phase extraction sorbents for the selective cleanup of melamine. An off‐line molecularly imprinted solid‐phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high‐performance liquid chromatography analysis. Optimum molecularly imprinted solid‐phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6–96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid‐phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre‐treatment of melamine in aquaculture feed samples.  相似文献   

11.
A highly selective sample cleanup procedure combined with molecularly imprinted SPE was developed for the isolation of crystal violet from seawater and seafood samples. The molecularly imprinted polymer was prepared using crystal violet as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross‐linker. The crystal violet‐imprinted polymer was used as the selective sorbent for the SPE of crystal violet. An off‐line molecularly imprinted SPE method followed by HPLC with diode‐array detection for the analysis of crystal violet was also established. Good linearity on the molecularly imprinted SPE columns was obtained from 0 to 200 μg/L (R2 > 0.99). The result demonstrated that the proposed method can be used for the direct determination of crystal violet in seawater and seafood samples. Finally, five samples were analyzed and the following crystal violet concentrations were obtained: 0.92 and 0.52 μg/L in two seawater samples, as well as 0.36 and 0.27 μg/kg in two seafood samples. There is no crystal violet detected in the third seawater sample.  相似文献   

12.
This work reports the preparation of molecularly imprinted polymer particles for the selective extraction and determination of four benzophenones from aqueous media. The polymer was prepared by using 4‐vinylpridine as functional monomer, ethylene glycol dimethacrylate as cross‐linker, acetonitrile as porogenic solvent and 2,2’,4,4’‐tetrehydroxybenzophenone as template. Good specific adsorption capacity (Qmax = 27.90 μmol/g) for 2,2’,4,4’‐tetrehydroxybenzophenone was obtained in the sorption experiment and good class selectivity for 2,2’,4,4’‐tetrehydroxybenzophenone, 2,4‐dihydroxybenzophenone, 2,2’‐dihydroxy‐4‐methoxybenzophenone, 2,2’‐dehydroxy‐4,4’‐dimethoxybenzophenone was demonstrated by the chromatographic evaluation experiment. Factors affecting the extraction efficiency of the molecularly imprinted solid‐phase extraction procedure were investigated systematically. An accurate and sensitive analytical method based on the molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and diode array detection has been successfully developed for the simultaneous determination of four benzophenones from tap water and river water with method detection limits of 0.25–0.72 ng/mL. The recoveries of benzophenones for water samples at two spiking levels (500 and 5000 ng/mL for each benzophenone) were in the range of 86.9–103.3% with relative standard deviations (n = 3) below 9.2%.  相似文献   

13.
A novel magnetic molecularly imprinted polymer adsorbing material was successfully synthesized to detect ribavirin in animal feedstuff. Molecularly imprinted polymer was prepared through surface polymerization by using ribavirin as template molecule, methyl methacrylate, and γ‐methacryloxypropyl trimethoxy silane functionalized magnetic mesoporous silica as bifunctional monomers, and ethylene diglycidyl ether as crosslinking agent. The prepared magnetic molecularly imprinted polymer was characterized by scanning electron microscopy and infrared spectroscopy. Static and dynamic adsorption experiments and selective adsorption analysis were performed to evaluate the adsorption and selectivity of magnetic molecularly imprinted polymer. Different experiments were conducted to optimize the magnetic solid‐phase extraction conditions. Under optimal experimental conditions, a magnetic molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography method was successfully developed for ribavirin detection. The established method achieved a satisfactory linear range of 0.20–50 mg/L (R> 0.99) and a low detection limit (0.081 mg/kg). An average recovery of 92–105% with relative standard deviation of <6.5% was obtained upon the application of the developed method to detect ribavirin in real feedstuff samples. Thus, established method can be used for the rapid and simple separation and detection of added ribavirin in feedstuff.  相似文献   

14.
The present work reported a novel hydrophilic and selective solid‐phase microextraction fiber by improved multiple co‐polymerization method immobilization of tetracycline molecularly imprinted polymer on a stainless steel wire and directly coupled with high‐performance liquid chromatography for sensitive determination of trace tetracyclines residues in animal derived foods. The developed molecularly imprinted polymer coated solid‐phase microextraction fibers were characterized through scanning electron microscopy, Fourier transfer infrared spectroscopy, thermogravimetric analysis, and adsorption experiments, the fiber with cross‐linked and porous structure was observed and high thermal and chemical stability. The maximum adsorption capacity of this fiber with good selectivity reached 2.35 µg/mg in aqueous matrices, and showed good repeatability (relative standard deviation ≤ 6.6%, n = 5) and satisfying reproducibility between fiber to fiber (relative standard deviation ≤ 7.8%, n = 5). Under the optimized solid‐phase microextraction conditions, satisfactory linearity (5–1000 µg/L) and detection limits (0.38–0.72 µg/kg, S/N = 3) for all the tetracyclines were obtained. The practicality of this method was proved by adding tetracycline, oxytetracycline at three levels to milk, chicken, and fish samples with good recoveries of 77.3–104.4%.  相似文献   

15.
In this paper, a new approach to prepare monolithic molecularly imprinted polymer (MIP) fibers for solid‐phase microextraction is proposed with the help of microwave irradiation. Imprinting polymerization was carried out within silica capillaries in 4.5 min, using dimethyl phthalate (DMP) as a template molecular, α‐methacrylic acid as a functional monomer and ethylene dimethacrylate as a crosslinker, acetonitrile as the porogenic solvent. The synthesis was optimized by varying the ratio of template/monomer and different volume of porogen. The resulted MIP fibers were obtained after silica being etched away with a controlled length of 1 cm, and subsequently characterized by SEM. In order to increase the selective extraction of DMP, factors affecting the extraction including extraction time, salt concentration, desorption time, and desorption solvents were investigated for solid‐phase microextraction procedures in detail. The selectivity coefficients, defined as the extraction amount ratio of MIP to its nonimprinting fiber, were 5.6, 2.6, and 1.4 for DMP and its counterpart including dibutyl phthalate and di‐n‐octylo‐phthalate, respectively. The resulted fibers were also applied to detect DMP, dibutyl phthalate, and di‐n‐octylo‐phthalate in bottled beverage samples coupled to HPLC and resulted in relative recoveries of up to 73.8–98.5%, respectively.  相似文献   

16.
A new method for the selective extraction of p‐aminosalicylic acid from aqueous and urine samples has been developed using magnetic molecularly imprinted polymer nanoparticles before determination by high‐performance liquid chromatography. The Fe3O4 nanoparticles were first prepared through the chemical coprecipitation of Fe2+ and Fe3+ and then coated with a vinyl shell. Subsequently, a layer of molecularly imprinted polymers was grafted onto the vinyl‐modified magnetic nanoparticles by precipitation polymerization. FTIR spectroscopy, scanning electron microscopy, vibrating sample magnetometry, and thermogravimetric analysis were applied to characterize the sorbent properties. Moreover, the predominant parameters affecting the magnetic solid phase extraction such as sample pH, sorption and elution times, the amount of sorbent, and composition and volume of eluent were investigated thoroughly. The maximum sorption capacity of the imprinted polymer toward p‐aminosalicylic acid was 70.9 mg/g, which is 4.5 times higher than that of the magnetic nonimprinted polymer. The magnetic molecularly imprinted polymer nanoparticles were applied for the selective extraction of p‐aminosalicylic acid from aqueous and urine samples and satisfactory results were achieved. The results illustrate that magnetic molecularly imprinted polymer nanoparticles have a great potential in the extraction of p‐aminosalicylic acid from environmental and biological matrices.  相似文献   

17.
The efficiency of a molecularly imprinted polymer as a selective packing material for the solid‐phase extraction of imatinib mesylate sorption was investigated. The molecularly imprinted polymer was prepared using N,N′‐methylenebisacrylamide as a cross‐linker agent, N‐vinylcaprolactam as a thermo‐sensitive monomer, 1‐vinyl‐2‐pyrrolidone and methyl methacrylate as functional monomers, azobisisobutyronitrile as an initiator and imatinib mesylate as a template. The drug‐imprinted polymer was identified by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and scanning electron microscopy. It was found that this polymer can be used for determination of trace levels of imatinib mesylate with a recovery percentage that could reach over 90%. Furthermore, the synthesized molecularly imprinted polymer indicated higher selectivity towards imatinib mesylate than other compounds. From isotherm study, the equilibrium adsorption data of imatinib mesylate by imprinted polymer were analyzed by Langmuir, Freundlich, and Temkin isotherm models. The developed method was used for determination of imatinib mesylate in human fluid samples by high performance liquid chromatography with excellent results.  相似文献   

18.
A molecularly imprinted polymer designed for the selective extraction of donepezil from serum samples was synthesized using a noncovalent molecular imprinting approach. The molecularly imprinted polymer was evaluated chromatographically and then its affinity for donepezil was confirmed by solid‐phase extraction. The optimal conditions for solid‐phase extraction were provided by cartridge conditioning using acidified water purified from a Milli‐Q system, sample loading under basic aqueous conditions, clean‐up using acetonitrile, and elution with methanol/tetrahydrofuran. Desirable molecular recognition properties of the molecularly imprinted polymer led to good donepezil recoveries (90–102%). The data indicated that the imprinted polymer has a perfect selectivity and affinity for donepezil and could be used for selective extraction and analysis of donepezil in human serum.  相似文献   

19.
Metronidazole‐imprinted polymers with superior recognition properties were prepared by a novel strategy called distillation–precipitation polymerization. The as‐obtained polymers were characterized by Fourier‐transform infrared spectroscopy, laser particle size determination and scanning electron microscopy, and their binding performances were evaluated in detail by static, kinetic and dynamic rebinding tests, and Scatchard analysis. The results showed that when the fraction of the monomers was 5 vol% in the whole reaction system, the prepared polymers afforded good morphology, monodispersity, and high adsorption capacity and excellent selectivity to the target molecule, metronidazole. The optimal binding performance is 12.41 mg/g for metronidazole just before leakage occurred and 38.51 mg/g at saturation in dynamic rebinding tests. Metronidazole‐imprinted polymers were further applied as packing agents in solid‐phase extraction and as chromatographic filler, both of which served for the detection of metronidazole in fish tissue. The results illustrated the recoveries of spiked samples ranged from 82.97 to 87.83% by using molecularly imprinted solid‐phase extraction combined with a C18 commercial column and 93.7 to 101.2% by directly using the polymer‐packed chromatographic column. The relative standard deviation of both methods was less than 6%.  相似文献   

20.
A novel molecularly imprinted polymer based on graphene oxide was prepared as a solid‐phase extraction adsorbent for the selective adsorption and extraction of cyromazine from seawater samples. The obtained graphene oxide molecularly imprinted polymer and non‐imprinted polymer were nanoparticles and characterized by scanning electron microscopy. The imprinted polymer showed higher adsorption capacity and better selectivity than non‐imprinted polymer, and the maximum adsorption capacity was 14.5 mg/g. The optimal washing and elution solvents for molecularly imprinted solid phase extraction procedure were 2 mL of acetonitrile/water (80:20, v/v) and methanol/acetic acid (70:30, v/v), respectively. The recoveries of cyromazine in the spiked seawater samples were in the range of 90.3–104.1%, and the relative standard deviation was <5% (n = 3) under the optimal procedure and detection conditions. The limit of detection of the proposed method was 0.7 μg/L, and the limit of quantitation was 2.3 μg/L. Moreover, the imprinted polymer could keep high adsorption capacity for cyromazine after being reused six times at least. Finally, the synthesized graphene oxide molecularly imprinted polymer was successfully used as a satisfied sorbent for high selectivity separation and detection of cyromazine from seawater coupled with high‐performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号