首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of Cu(NO3)2·3H2O with 2,4′‐oxybis(benzoic acid) and 4,4′‐bipyridine under hydrothermal conditions produced a new mixed‐ligand two‐dimensional copper(II) coordination polymer, namely poly[[(μ‐4,4′‐bipyridine‐κ2N ,N ′)[μ‐2,4′‐oxybis(benzoato)‐κ4O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O}n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two‐dimensional wave‐like network through 4,4′‐bipyridine and 2,4′‐oxybis(benzoate) ligands. The two‐dimensional layers are expanded into a three‐dimensional supramolecular structure through intermolecular O—H…O and C—H…O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.  相似文献   

2.
The new synthesized ligand (DADMBTZ = 2,2′‐diamino‐5,5′‐dimethyl‐4,4′‐bithiazole), which is mentioned in this text, is used for preparing the two new complexes [Zn(DADMBTZ)3](ClO4)2. 0.8MeOH.0.2H2O ( 1 ) and [Cd(DADMBTZ)3](ClO4)2 ( 2 ). The characterization was done by IR, 1H, 13C NMR spectroscopy, elemental analysis and single crystal X‐ray determination. In reaction with DADMBTZ, zinc(II) and cadmium(II) show different characterization. In 2 , to form a tris‐chelate complex with nearly C3 symmetry for coordination polyhedron, DADMBTZ acts as a bidentate ligand. In 1 , this difference maybe relevant to small radii of Zn2+ which make one of the DADMBTZ ligands act as a monodentate ligand to form the five coordinated Zn2+ complex. In both 1 and 2 complexes the anions are symmetrically different. 1 and 2 complexes form 2‐D and 3‐D networks via N‐H···O and N‐H···N hydrogen bonds, respectively.  相似文献   

3.
Two new coordination polymers, {[Cd2(btc)(2,2′‐bpy)2] · H2O}n ( 1 ) and [Zn2(btc)(2,2′‐bpy)(H2O)]n ( 2 ) (H4btc = biphenyl‐2,2′,4,4′‐tetracarboxylic acid, 2,2′‐bpy = 2,2′‐bipyridine), were synthesized hydrothermally under similar conditions and characterized by elemental analysis, IR spectra, TGA, and single‐crystal X‐ray diffraction analysis. In complexes 1 and 2 , the (btc)4– ligand acts as connectors to link metal ions to give a 2D bilayer network of 1 and a 3D metal‐organic framework of 2 , respectively. The differences in the structures are induced by diverging coordination modes of the (btc)4– ligand, which can be attributed to the difference metal ions in sizes. The results indicate that metal ions have significant effects on the formation and structures of the final complexes. Additionally, the fluorescent properties of the two complexes were also studied in the solid state at room temperature.  相似文献   

4.
Syntheses and Structures of Bis(4,4′‐t‐butyl‐2,2′‐bipyridine) Ruthenium(II) Complexes with functional Derivatives of Tetramethyl‐bibenzimidazole [(tbbpy)2RuCl2] reacts with dinitro‐tetramethylbibenzimidazole ( A ) in DMF to form the complex [(tbbpy)2Ru( A )](PF6)2 ( 1a ) (tbbpy: bis(4,4′‐t‐butyl)‐2,2′bipyridine). Exchange of the two PF6? anions by a mixture of tetrafluor‐terephthalat/tetrafluor‐terephthalic acid results in the formation of 1b in which an extended hydrogen‐bonded network is formed. According to the 1H NMR spectra and X‐ray analyses of both 1a and 1b , the two nitro groups of the bibenzimidazole ligand are situated at the periphery of the complex in cis position to each other. Reduction of the nitro groups in 1a with SnCl2/HCl results in the corresponding diamino complex 2 which is a useful starting product for further functionalization reactions. Substitution of the two amino groups in 2 by bromide or iodide via Sandmeyer reaction results in the crystalline complexes [(tbbpy)2Ru( C )](PF6)2 and [(tbbpy)2Ru( D )](PF6)2 ( C : dibromo‐tetrabibenzimidazole, D : diiodo‐tetrabibenzimidazole). Furthermore, 2 readily reacts with 4‐t‐butyl‐salicylaldehyde or pyridine‐2‐carbaldehyde under formation of the corresponding Schiff base RuII complexes 5 and 6 . 1H NMR spectra show that the substituents (NH2, Br, I, azomethines) in 2 ‐ 6 are also situated in peripheral positions, cis to each other. The solid state structure of both 2 , and 3 , determined by X‐ray analyses confirm this structure. In addition, the X‐ray diffraction analyses of single crystals of the complexes [(tri‐t‐butyl‐terpy)(Cl)Ru( A )] ( 7 ) and [( A )PtCl2] ( 8 ) display also that the nitro groups in these complexes are in a cis‐arrangement.  相似文献   

5.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

6.
The syntheses, characterizations and in vitro cytotoxities of seven soluble silver (I) compounds (1–7) with 2,2′‐bipyridine (bpy), 5,5′‐dimethyl‐2,2′‐bipyridine (dmbpy) and 1, 10‐phenanthroline (phen) are described. Two of the complexes, [Ag(dmbpy)(NO3)] (1) and [Ag(dmbpy)]ClO4(2), have been structurally established by single‐crystal X‐ray diffraction, which reveals the silver(I) atom in compound 1 is in a Y‐shape coordination geometry with two N atoms (av. Ag? N = 227.8 pm) from a chelate dmbpy ligand and an O atom (Ag? O=221.8(4) pm) from a monodentate nitrate. The Ag(I) atom in compound 2 is three‐coordinated by three N atoms, two of which are from a chelate dmbpy, and one from an acetonitrile ligand. The seven compounds showed strong cytotoxities in vitro to both normal and carcinoma cells.  相似文献   

7.
In the title salt, C14H18N22+·2C9H5N4O, the 1,1′‐diethyl‐4,4′‐bipyridine‐1,1′‐diium dication lies across a centre of inversion in the space group P21/c. In the 1,1,3,3‐tetracyano‐2‐ethoxypropenide anion, the two independent –C(CN)2 units are rotated, in conrotatory fashion, out of the plane of the central propenide unit, making dihedral angles with the central unit of 16.0 (2) and 23.0 (2)°. The ionic components are linked by C—H...N hydrogen bonds to form a complex sheet structure, within which each cation acts as a sixfold donor of hydrogen bonds and each anion acts as a threefold acceptor of hydrogen bonds.  相似文献   

8.
Two coordination polymers, {[Zn2(L)(bpy)] · 2H2O}n ( 1 ) and [Zn2(L)(bpe)]n ( 2 ) [H4L = terphenyl‐2,2′,4,4′‐tetracarboxylic acid, bpy = 4,4′‐bipyridine, and bpe = 1,2‐bis(4‐pyridyl)ethane], were hydrothermally synthesized under similar conditions and characterized by elemental analysis, IR spectroscopy, TGA, and single‐crystal X‐ray diffraction analysis. Compound 1 has a 3D framework containing Zn–O–C–O–Zn 1D chains. Compound 2 exhibits a 3D framework, which features tubular channels. The channels are occupied by bpe molecules. The differences in the structures demonstrate that the auxiliary dipyridyl‐containing ligand has a significant effect on the construction of the final framework. Additionally, the fluorescent properties of the two compounds were also studied in the solid state at room temperature.  相似文献   

9.
The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5′‐dmbpy)2]ClO4·H2O (where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate–5,5′‐dmbpy–KClO4 system. Within the complex cation, the NiII atom is hexacoordinated by two chelating 5,5′‐dmbpy ligands and one chelating ac ligand. The mean Ni—N and Ni—O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen‐bonded centrosymmetric dimers, which are further connected by π–π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single‐ion anisotropy, D, which arises from the reduced local symmetry of the cis‐NiO2N4 chromophore. The fitting of the variable‐temperature magnetic data (2–300 K) gives giso = 2.134 and D/hc = 3.13 cm−1.  相似文献   

10.
Chiral ligand (A)‐N,N′‐Bis(2‐hydroxy‐3,5‐di‐tert‐butyl‐arylmethyl)‐1,1′‐binaphthalene‐2,2′‐diamine derived from the reduction of Schiff base (R)‐2,2′‐bis (3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)‐1, 1′‐binaphthyl with LiAlH4, is fairly effective in the asymmetric addition reaction of diethylzinc to aldehydes by which good yields (46%‐94%) of the corresponding sec‐alcohols can be obtained in moderate ee (51%‐79%) with R configuration for a variety of aldehydes.  相似文献   

11.
To determine the influence of the size of the aromatic chelate ligands on the frameworks of metal tretracarboxylate polymers, two new coordination polymers [Cd(btc)0.5 (2,2′‐bpy)] ( 1 ) and [Cd(btc)0.5(phen)]·H2O ( 2 ) (H4btc = biphenyl‐3,3′,4,4′‐tetracarboxylic acid, 2,2′‐bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized under similar hydrothermal conditions. In complex 1 , the dimeric Cd2 units are linked by bridging btc4? ligand to form a 2D layered network, whereas complex 2 possesses a 3D metal‐organic framework consisting of the dimeric Cd2 units. The differences of two metal‐organic frameworks demonstrate that the size of the rigid aromatic chelate ligands have an important effect on the structures of their complexes. Additionally, the two complexes show strong fluorescence in the solid state at room temperature.  相似文献   

12.
The three‐dimensional (3D) coordination polymer [Zn6(btc)4(4,4′‐bipy)5]n ( 1 ) (btc = 1,2,4‐benzenetricarboxylate; 4,4′‐bipy = 4,4′‐bipyridine) has been prepared hydrothermally. The zinc(II) centers in 1 are bridged by btc ligands to form a trinuclear subunit, which is further linked by 4,4′‐bipy and btc ligands to construct the 3D coordination architecture. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
With regard to crystal engineering, building block or modular assembly methodologies have shown great success in the design and construction of metal–organic coordination polymers. The critical factor for the construction of coordination polymers is the rational choice of the organic building blocks and the metal centre. The reaction of Zn(OAc)2·2H2O (OAc is acetate) with 3‐nitrobenzoic acid (HNBA) and 4,4′‐bipyridine (4,4′‐bipy) under hydrothermal conditions produced a two‐dimensional zinc(II) supramolecular architecture, catena‐poly[[bis(3‐nitrobenzoato‐κ2O,O′)zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn(C7H4NO4)2(C10H8N2)]n or [Zn(NBA)2(4,4′‐bipy)]n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction analysis. The ZnII ions are connected by the 4,4′‐bipy ligands to form a one‐dimensional zigzag chain and the chains are decorated with anionic NBA ligands which interact further through aromatic π–π stacking interactions, expanding the structure into a threefold interpenetrated two‐dimensional supramolecular architecture. The solid‐state fluorescence analysis indicates a slight blue shift compared with pure 4,4′‐bipyridine and HNBA.  相似文献   

14.
A new coordination polymer (CP), namely poly[(μ‐4,4′‐bipyridine)(μ3‐3,4′‐oxydibenzoato)cobalt(II)], [Co(C14H8O5)(C10H8N2)]n or [Co(3,4′‐obb)(4,4′‐bipy)]n ( 1 ), was prepared by the self‐assembly of Co(NO3)2·6H2O with the rarely used 3,4′‐oxydibenzoic acid (3,4′‐obbH2) ligand and 4,4′‐bipyridine (4,4′‐bipy) under solvothermal conditions, and has been structurally characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray crystallography and powder X‐ray diffraction (PXRD). Single‐crystal X‐ray diffraction reveals that each CoII ion is six‐coordinated by four O atoms from three 3,4′‐obb2? ligands, of which two function as monodentate ligands and the other as a bidentate ligand, and by two N atoms from bridging 4,4′‐bipy ligands, thereby forming a distorted octahedral CoN2O4 coordination geometry. Adjacent crystallographically equivalent CoII ions are bridged by the O atoms of 3,4′‐obb2? ligands, affording an eight‐membered Co2O4C2 ring which is further extended into a two‐dimensional [Co(3,4′‐obb)]n sheet along the ab plane via 3,4′‐obb2? functioning as a bidentate bridging ligand. The planes are interlinked into a three‐dimensional [Co(3,4′‐obb)(4,4′‐bipy)]n network by 4,4′‐bipy ligands acting as pillars along the c axis. Magnetic investigations on CP 1 disclose an antiferromagnetic coupling within the dimeric Co2 unit and a metamagnetic behaviour at low temperature resulting from intermolecular π–π interactions between the parallel 4,4′‐bipy ligands.  相似文献   

15.
Two new layered complexes with the formulas of {[Cu(H2O)(HL)2Cl](NO3)}n ( 1 ) and {[Cu(H2O)2(HL)2](NO3)2}n ( 2 ) were solvothermally synthesized by the reactions of the bulky conjugated 4′‐(4‐hydroxyphenyl)‐4,2′:6′,4′′‐terpyridine ligand (HL) with different CuII salts, which were further used as photocatalysts to achieve hydrogen production from water splitting. Single‐crystal structural analyses reveal that both complexes feature coplanar (4 4) layers with different connection manners between the HL extended Z‐shaped chains. More interestingly, 1 possessing more negative conduction band potential and higher structural stability exhibits a large hydrogen production rate of 2.43 mmol · g–1 · h–1, which is four times higher than that of 2 . Thus, the CuII‐based coordination polymers modified by the bulky conjugated organic ligand can become potentially promising non‐Pt photocatalysts for hydrogen production from water splitting.  相似文献   

16.
The 1,6,7,12,13,18‐hexaazatrinaphthylene (HATN) complex [(Et2Zn)33‐HATN)] was synthesized and characterized by IR spectroscopy, UV/Vis spectroscopy, elemental analysis and ESI‐MS spectrometry. Attempts to prepare ZnCl2 complexes of HATN leads only to the mononuclear [(Cl2Zn)(HATN)] derivative, characterized by X‐ray diffraction, IR‐ and UV/Vis‐spectroscopy as well as ESI‐MS spectrometry. The bright red 2,2′‐bipyridine (bipy) complex [(Et2Zn)(bipy)] ( 1 ) was synthesized and characterized by X‐ray diffraction and NMR spectroscopy. The UV/Vis‐spectra of the HATN‐complexes show absorptions in regions of far longer wavelengths than the corresponding 2,2′‐bipyridine or 1,10‐phenantroline complexes. Consequently the π*‐LUMO of HATN ( 5 ) is lower in energy than the π*‐LUMO of 2,2′‐bipyridine ( 2 ) or 1,10‐phenanthroline (phen).  相似文献   

17.
A metal–organic framework with a novel topology, poly[sesqui(μ2‐4,4′‐bipyridine)bis(dimethylformamide)bis(μ4‐4,4′,4′′‐nitrilotribenzoato)trizinc(II)], [Zn3(C21H12NO6)2(C10H8N2)1.5(C3H7NO)2]n, was obtained by the solvothermal method using 4,4′,4′′‐nitrilotribenzoic acid and 4,4′‐bipyridine (bipy). The structure, determined by single‐crystal X‐ray diffraction analysis, possesses three kinds of crystallographically independent ZnII cations, as well as binuclear Zn2(COO)4(bipy)2 paddle‐wheel clusters, and can be reduced to a novel topology of a (3,3,6)‐connected 3‐nodal net, with the Schläfli symbol {5.62}4{52.6}4{58.87} according to the topological analysis.  相似文献   

18.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

19.
In this paper we report on the potential dependent electrocrystallization of [Ag(4,4′‐dimethyl‐2,2′‐bipyridine)2(NO3)2] ( 1 ) and Ag(4,4′‐dimethyl‐2,2′‐bipyridine)(NO3)2 ( 2 ) from the same electrolytic bath. Thus it has been shown for the first time that the coordination number of silver ion to ligands can be tuned by the electrocrystallization potential. The single crystal structure analysis [ 1 : C2/c, a = 18.6308(15), b = 14.5708(12), c = 11.5867(10) Å, β = 126.5910(10)°, Z = 4, R = 3.9 %] [ 2 : P21/c, a = 8.5865(11) b = 11.0157(14) c = 16.4554(10) Å, β = 111.102(10), Z = 4 , R = 3.5 %] show divalent silver to be in an approximately square planar surrounding. Both complexes are paramagnetic following Curie's law with magnetic moments of 1.86 μB and 1.72 μB respectively.  相似文献   

20.
A novel three‐dimensional ZnII complex, poly[[(μ2‐4,4′‐bipyridine)(μ4‐naphthalene‐1,4‐dicarboxylato)(μ2‐naphthalene‐1,4‐dicarboxylato)dizinc(II)] dimethylformamide monosolvate monohydrate], {[Zn2(C12H6O4)2(C10H8N2)]·2C3H7NO·H2O)}n, has been prepared by the solvothermal assembly of Zn(NO3)·6H2O, naphthalene‐1,4‐dicarboxylic acid and 4,4′‐bipyridine. The two crystallographically independent Zn atoms adopt the same four‐coordinated tetrahedral geometry (ZnO3N) by bonding to three O atoms from three different naphthalene‐1,4‐dicarboxylate (1,4‐ndc) ligands and one N atom from a 4,4′‐bipyridine (bpy) ligand. The supramolecular secondary building unit (SBU) is a distorted paddle‐wheel‐like {Zn2(COO)2N2O2} unit and these units are linked by 1,4‐ndc ligands within the layer to form a two‐dimensional net parallel to the ab plane, which is further connected by bpy ligands to form the three‐dimensional framework. The single net leaves voids that are filled by mutual interpenetration of an independent equivalent framework in a twofold interpenetrating architecture. The title compound is stable up to 673 K. Excitation and luminescence data observed at room temperature show that it emits bright‐blue fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号