首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single‐point upstream weighting schemes remain the reservoir simulation standard for integrating the convective components of the subsurface flow equations. While single‐point upstream weighting is attractive due to simplicity and small stencil, the accompanying first‐order error can contribute to a large amount of grid‐dependent numerical diffusion which smooths the numerical solution. New upwind schemes are introduced for reservoir simulation that significantly reduce cross‐wind diffusion, retain a local flux approximation with local conservation, and are free of spurious oscillations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with the development of a high‐order upwind conservative discretization method for the simulation of flows of a Newtonian fluid in two dimensions. The fluid‐flow domain is discretized using a Cartesian grid from which non‐overlapping rectangular control volumes are formed. Line integrals arising from the integration of the diffusion and convection terms over control volumes are evaluated using the middle‐point rule. One‐dimensional integrated radial basis function schemes using the multiquadric basis function are employed to represent the variations of the field variables along the grid lines. The convection term is effectively treated using an upwind scheme with the deferred‐correction strategy. Several highly non‐linear test problems governed by the Burgers and the Navier–Stokes equations are simulated, which show that the proposed technique is stable, accurate and converges well. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A class of higher order compact (HOC) schemes has been developed with weighted time discretization for the two‐dimensional unsteady convection–diffusion equation with variable convection coefficients. The schemes are second or lower order accurate in time depending on the choice of the weighted average parameter μ and fourth order accurate in space. For 0.5?μ?1, the schemes are unconditionally stable. Unlike usual HOC schemes, these schemes are capable of using a grid aspect ratio other than unity. They efficiently capture both transient and steady solutions of linear and nonlinear convection–diffusion equations with Dirichlet as well as Neumann boundary condition. They are applied to one linear convection–diffusion problem and three flows of varying complexities governed by the two‐dimensional incompressible Navier–Stokes equations. Results obtained are in excellent agreement with analytical and established numerical results. Overall the schemes are found to be robust, efficient and accurate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
This paper reports a comparative study on the stability limits of nine finite difference schemes to discretize the one‐dimensional unsteady convection–diffusion equation. The tested schemes are: (i) fourth‐order compact; (ii) fifth‐order upwind; (iii) fourth‐order central differences; (iv) third‐order upwind; (v) second‐order central differences; and (vi) first‐order upwind. These schemes were used together with Runge–Kutta temporal discretizations up to order six. The remaining schemes are the (vii) Adams–Bashforth central differences, (viii) the Quickest and (ix) the Leapfrog central differences. In addition, the dispersive and dissipative characteristics of the schemes were compared with the exact solution for the pure advection equation, or simple first or second derivatives, and numerical experiments confirm the Fourier analysis. The results show that fourth‐order Runge–Kutta, together with central schemes, show good conditional stability limits and good dispersive and dissipative spectral resolution. Overall the fourth‐order compact is the recommended scheme. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A new grid‐free upwind relaxation scheme for simulating inviscid compressible flows is presented in this paper. The non‐linear conservation equations are converted to linear convection equations with non‐linear source terms by using a relaxation system and its interpretation as a discrete Boltzmann equation. A splitting method is used to separate the convection and relaxation parts. Least squares upwinding is used for discretizing the convection equations, thus developing a grid‐free scheme which can operate on any arbitrary distribution of points. The scheme is grid free in the sense that it works on any arbitrary distribution of points and it does not require any topological information like elements, faces, edges, etc. This method is tested on some standard test cases. To explore the power of the grid‐free scheme, solution‐based adaptation of points is done and the results are presented, which demonstrate the efficiency of the new grid‐free scheme. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The purpose of the present paper is to evaluate very‐high‐order upwind schemes for the direct numerical simulation (DNS ) of compressible wall‐turbulence. We study upwind‐biased (UW ) and weighted essentially nonoscillatory (WENO ) schemes of increasingly higher order‐of‐accuracy (J. Comp. Phys. 2000; 160 :405–452), extended up to WENO 17 (AIAA Paper 2009‐1612, 2009). Analysis of the advection–diffusion equation, both as Δx→0 (consistency), and for fixed finite cell‐Reynolds‐number ReΔx (grid‐resolution), indicates that the very‐high‐order upwind schemes have satisfactory resolution in terms of points‐per‐wavelength (PPW ). Computational results for compressible channel flow (Re∈[180, 230]; M?CL ∈[0.35, 1.5]) are examined to assess the influence of the spatial order of accuracy and the computational grid‐resolution on predicted turbulence statistics, by comparison with existing compressible and incompressible DNS databases. Despite the use of baseline Ot2) time‐integration and Ox2) discretization of the viscous terms, comparative studies of various orders‐of‐accuracy for the convective terms demonstrate that very‐high‐order upwind schemes can reproduce all the DNS details obtained by pseudospectral schemes, on computational grids of only slightly higher density. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Third‐order and fifth‐order upwind compact finite difference schemes based on flux‐difference splitting are proposed for solving the incompressible Navier–Stokes equations in conjunction with the artificial compressibility (AC) method. Since the governing equations in the AC method are hyperbolic, flux‐difference splitting (FDS) originally developed for the compressible Euler equations can be used. In the present upwind compact schemes, the split derivatives for the convective terms at grid points are linked to the differences of split fluxes between neighboring grid points, and these differences are computed by using FDS. The viscous terms are approximated with a sixth‐order central compact scheme. Comparisons with 2D benchmark solutions demonstrate that the present compact schemes are simple, efficient, and high‐order accurate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A higher order compact (HOC) finite difference solution procedure has been proposed for the steady two‐dimensional (2D) convection–diffusion equation on non‐uniform orthogonal Cartesian grids involving no transformation from the physical space to the computational space. Effectiveness of the method is seen from the fact that for the first time, an HOC algorithm on non‐uniform grid has been extended to the Navier–Stokes (N–S) equations. Apart from avoiding usual computational complexities associated with conventional transformation techniques, the method produces very accurate solutions for difficult test cases. Besides including the good features of ordinary HOC schemes, the method has the advantage of better scale resolution with smaller number of grid points, with resultant saving of memory and CPU time. Gain in time however may not be proportional to the decrease in the number of grid points as grid non‐uniformity imparts asymmetry to some of the associated matrices which otherwise would have been symmetric. The solution procedure is also highly robust as it computes complex flows such as that in the lid‐driven square cavity at high Reynolds numbers (Re), for which no HOC results have so far been seen. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, an original second‐order upwind scheme for convection terms is described and implemented in the context of a Control‐Volume Finite‐Element Method (CVFEM). The proposed scheme is a second‐order extension of the first‐order MAss‐Weighted upwind (MAW) scheme proposed by Saabas and Baliga (Numer. Heat Transfer 1994; 26B :381–407). The proposed second‐order scheme inherits the well‐known stability characteristics of the MAW scheme, but exhibits less artificial viscosity and ensures much higher accuracy. Consequently, and in contrast with nearly all second‐order upwind schemes available in the literature, the proposed second‐order MAW scheme does not need limiters. Some test cases including two pure convection problems, the driven cavity and steady and unsteady flows over a circular cylinder, have been undertaken successfully to validate the new scheme. The verification tests show that the proposed scheme exhibits a low level of artificial viscosity in the pure convection problems; exhibits second‐order accuracy for the driven cavity; gives accurate reattachment lengths for low‐Reynolds steady flow over a circular cylinder; and gives constant‐amplitude vortex shedding for the case of high‐Reynolds unsteady flow over a circular cylinder. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
For two‐phase flow models, upwind schemes are most often difficult do derive, and expensive to use. Centred schemes, on the other hand, are simple, but more dissipative. The recently proposed multi‐stage (MUSTA ) method is aimed at coming close to the accuracy of upwind schemes while retaining the simplicity of centred schemes. So far, the MUSTA approach has been shown to work well for the Euler equations of inviscid, compressible single‐phase flow. In this work, we explore the MUSTA scheme for a more complex system of equations: the drift‐flux model, which describes one‐dimensional two‐phase flow where the motions of the phases are strongly coupled. As the number of stages is increased, the results of the MUSTA scheme approach those of the Roe method. The good results of the MUSTA scheme are dependent on the use of a large‐enough local grid. Hence, the main benefit of the MUSTA scheme is its simplicity, rather than CPU ‐time savings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper we present a class of semi‐discretization finite difference schemes for solving the transient convection–diffusion equation in two dimensions. The distinct feature of these scheme developments is to transform the unsteady convection–diffusion (CD) equation to the inhomogeneous steady convection–diffusion‐reaction (CDR) equation after using different time‐stepping schemes for the time derivative term. For the sake of saving memory, the alternating direction implicit scheme of Peaceman and Rachford is employed so that all calculations can be carried out within the one‐dimensional framework. For the sake of increasing accuracy, the exact solution for the one‐dimensional CDR equation is employed in the development of each scheme. Therefore, the numerical error is attributed primarily to the temporal approximation for the one‐dimensional problem. Development of the proposed time‐stepping schemes is rooted in the Taylor series expansion. All higher‐order time derivatives are replaced with spatial derivatives through use of the model differential equation under investigation. Spatial derivatives with orders higher than two are not taken into account for retaining the linear production term in the convection–diffusion‐reaction differential system. The proposed schemes with second, third and fourth temporal accuracy orders have been theoretically explored by conducting Fourier and dispersion analyses and numerically validated by solving three test problems with analytic solutions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The control volume finite element method (CVFEM) was developed to combine the local numerical conservation property of control volume methods with the unstructured grid and generality of finite element methods (FEMs). Most implementations of CVFEM include mass‐lumping and upwinding techniques typical of control volume schemes. In this work we compare, via numerical error analysis, CVFEM and FEM utilizing consistent and lumped mass implementations, and stabilized Petrov–Galerkin streamline upwind schemes in the context of advection–diffusion processes. For this type of problem, we find no apparent advantage to the local numerical conservation aspect of CVFEM as compared to FEM. The stabilized schemes improve accuracy and degree of positivity on coarse grids, and also reduce iteration counts for advection‐dominated problems. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

13.
Methods based on exponential finite difference approximations of h4 accuracy are developed to solve one and two‐dimensional convection–diffusion type differential equations with constant and variable convection coefficients. In the one‐dimensional case, the numerical scheme developed uses three points. For the two‐dimensional case, even though nine points are used, the successive line overrelaxation approach with alternating direction implicit procedure enables us to deal with tri‐diagonal systems. The methods are applied on a number of linear and non‐linear problems, mostly with large first derivative terms, in particular, fluid flow problems with boundary layers. Better accuracy is obtained in all the problems, compared with the available results in the literature. Application of an exponential scheme with a non‐uniform mesh is also illustrated. The h4 accuracy of the schemes is also computationally demonstrated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
A bounded upwinding scheme for numerical solution of hyperbolic conservation laws and Navier–Stokes equations is presented. The scheme is based on convection boundedness criterion and total variation diminishing stability criteria and developed by employing continuously differentiable functions. The accuracy of the scheme is verified by assessing the error and observed convergence rate on 1‐D benchmark test cases. A comparative study between the new scheme and conventional total variation diminishing/convection boundedness criterion‐based upwind schemes to solve standard nonlinear hyperbolic conservation laws is also accomplished. The scheme is then examined in the simulation of Newtonian and non‐Newtonian fluid flows of increasing complexity; a satisfactory agreement has been observed in terms of the overall behavior. Finally, the scheme is used to study the hydrodynamics of a gas‐solid flow in a bubbling fluidized bed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A new vortex particle‐in‐cell (PIC) method is developed for the computation of three‐dimensional unsteady, incompressible viscous flow in an unbounded domain. The method combines the advantages of the Lagrangian particle methods for convection and the use of an Eulerian grid to compute the diffusion and vortex stretching. The velocity boundary conditions used in the method are of Dirichlet‐type, and can be calculated using the vorticity field on the grid by the Biot–Savart equation. The present results for the propagation speed of the single vortex ring are in good agreement with the Saffman's model. The applications of the method to the head‐on and head‐off collisions of the two vortex rings show good agreement with the experimental and numerical literature. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Introduction of a time‐accurate stabilized finite‐element approximation for the numerical investigation of weakly nonlinear and weakly dispersive water waves is presented in this paper. To make the time approximation match the order of accuracy of the spatial representation of the linear triangular elements by the Galerkin finite‐element method, the fourth‐order time integration of implicit multistage Padé method is used for the development of the numerical scheme. The streamline‐upwind Petrov–Galerkin (SUPG) method with crosswind diffusion is employed to stabilize the scheme and suppress the spurious oscillations, usually common in the numerical computation of convection‐dominated flow problems. The performance of numerical stabilization and accuracy is addressed. Treatments of various boundary conditions, including the open boundary conditions, the perfect reflecting boundary conditions along boundaries with irregular geometry, are also described. Numerical results showing the comparisons with analytical solutions, experimental measurements, and other published numerical results are presented and discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The two‐dimensional convection–diffusion‐type equations are solved by using the boundary element method (BEM) based on the time‐dependent fundamental solution. The emphasis is given on the solution of magnetohydrodynamic (MHD) duct flow problems with arbitrary wall conductivity. The boundary and time integrals in the BEM formulation are computed numerically assuming constant variations of the unknowns on both the boundary elements and the time intervals. Then, the solution is advanced to the steady‐state iteratively. Thus, it is possible to use quite large time increments and stability problems are not encountered. The time‐domain BEM solution procedure is tested on some convection–diffusion problems and the MHD duct flow problem with insulated walls to establish the validity of the approach. The numerical results for these sample problems compare very well to analytical results. Then, the BEM formulation of the MHD duct flow problem with arbitrary wall conductivity is obtained for the first time in such a way that the equations are solved together with the coupled boundary conditions. The use of time‐dependent fundamental solution enables us to obtain numerical solutions for this problem for the Hartmann number values up to 300 and for several values of conductivity parameter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Influence of finite difference schemes and subgrid‐stress models on the large eddy simulation calculation of turbulent flow around a bluff body of square cylinder at a laboratory Reynolds number, has been examined. It is found that the type and the order of accuracy of finite‐difference schemes and the subgrid‐stress model for satisfactory results are dependent on each other, and the grid resolution and the Reynolds number. Using computational grids manageable by workstation‐level computers, with which the near‐wall region of the separating boundary layer cannot be resolved, central‐difference schemes of realistic orders of accuracy, either fully conservative or non‐conservative, suffer stability problems. The upwind‐biased schemes of third order and the Smagorinsky eddy‐viscosity subgrid model can give reasonable results resolving much of the energy‐containing turbulent eddies in the boundary layers and in the wake and representing the subgrid stresses in most parts of the flow. Noticeable improvements can be obtained by either using higher order difference schemes, increasing the grid resolution and/or by implementing a dynamic subgrid stress model, but each at a cost of increased computational time. For further improvements, the very small‐scale eddies near the upstream corners and in the laminar sublayers need to be resolved but would require a substantially larger number of grid points that are out of the range of easily accessible computers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Almost all evaluations of convection schemes reported in the literature are conducted using simple problems on uniform orthogonal grids; thus, having limited contribution when solving industrial computational fluid dynamics (CFD), where the grids are usually non‐orthogonal with distortions. Herein, several convection schemes are assessed in uniform and distorted non‐orthogonal grids with emphasis on industrial applications. Linear and nonlinear (TVD) convection schemes are assessed on analytical benchmarks in both uniform and distorted grids. To evaluate the performance of the schemes, four error metrics are used: dissipation, phase and L1 errors, and the schemes' effective order of accuracy. Qualitative and quantitative deterioration of these error metrics as a function of the grid distortion metrics are investigated, and rigorous verifications are performed. Recommendations for effective use of the convection schemes based on the range of grid aspect ratio (AR), expansion ratio (ER) and skewness (Q) are included. A ship hydrodynamics case is studied, involving a Reynolds averaged Navier–Stokes simulation of a bare‐hull KVLCC2 tanker using linear and nonlinear convection schemes coupled with isotropic and anisotropic Reynolds‐stress (ARS) turbulence models using CFDShip‐Iowa v4. Predictions of local velocities and turbulent quantities from the midships to the nominal wake plane are compared with experimental fluid dynamics (EFD), and rigorous verification and validation analyses for integral forces and moments are performed for 0° and 12° drift angles. Best predictions are observed when coupling a second‐order TVD scheme with the anisotropic turbulence model. Further improvements are observed in terms of prediction of the vortical structures for 30° drift when using TVD2S‐ARS coupled with DES. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A horizontally curvilinear non‐hydrostatic free surface model that embeds the second‐order projection method, the so‐called θ scheme, in fractional time stepping is developed to simulate nonlinear wave motion in curved boundaries. The model solves the unsteady, Navier–Stokes equations in a three‐dimensional curvilinear domain by incorporating the kinematic free surface boundary condition with a top‐layer boundary condition, which has been developed to improve the numerical accuracy and efficiency of the non‐hydrostatic model in the standard staggered grid layout. The second‐order Adams–Bashforth scheme with the third‐order spatial upwind method is implemented in discretizing advection terms. Numerical accuracy in terms of nonlinear phase speed and amplitude is verified against the nonlinear Stokes wave theory over varying wave steepness in a two‐dimensional numerical wave tank. The model is then applied to investigate the nonlinear wave characteristics in the presence of dispersion caused by reflection and diffraction in a semicircular channel. The model results agree quantitatively with superimposed analytical solutions. Finally, the model is applied to simulate nonlinear wave run‐ups caused by wave‐body interaction around a bottom‐mounted cylinder. The numerical results exhibit good agreement with experimental data and the second‐order diffraction theory. Overall, it is shown that the developed model, with only three vertical layers, is capable of accurately simulating nonlinear waves interacting within curved boundaries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号